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Abstract Opitz BBB/G syndrome (OS) is a heterogenous
malformation syndrome mainly characterised by hypertelo-
rism and hypospadias. In addition, patients may present with
several other defects of the ventral midline such as cleft lip
and palate and congenital heart defects. The syndrome-caus-
ing gene encodes the X-linked E3 ubiquitin ligase MID1
that mediates ubiquitin-speciWc modiWcation and degrada-
tion of the catalytic subunit of the translation regulator pro-
tein phosphatase 2A (PP2A). Here, we show that the MID1
protein also associates with elongation factor 1� (EF-1�)
and several other proteins involved in mRNA transport and
translation, including RACK1, Annexin A2, Nucleophos-
min and proteins of the small ribosomal subunits. Mutant
MID1 proteins as found in OS patients lose the ability to
interact with EF-1�. The composition of the MID1 protein
complex was determined by several independent methods:
(1) yeast two-hybrid screening and (2) immunoXuorescence,
(3) a biochemical approach involving aYnity puriWcation of

the complex, (4) co-fractionation in a microtubule assembly
assay and (5) immunoprecipitation. Moreover, we show that
the cytoskeleton-bound MID1/translation factor complex
speciWcally associates with G- and U-rich RNAs and incor-
porates MID1 mRNA, thus forming a microtubule-associ-
ated ribonucleoprotein (RNP) complex. Our data suggest a
novel function of the OS gene product in directing transla-
tional control to the cytoskeleton. The dysfunction of this
mechanism would lead to malfunction of microtubule-asso-
ciated protein translation and to the development of OS.

Introduction

Opitz BBB/G syndrome (OS) is a heterogeneous malforma-
tion syndrome resulting from defective development of the
ventral midline and is characterised by hypertelorism, hypo-
spadias, cleft lip and palate, tracheo-esophageal malforma-
tions and congenital heart defects (Opitz et al. 1969a, b).
Mutations in the RING Wnger protein MID1 cause the
X-linked form of the syndrome (Quaderi et al. 1997). MID1
associates with microtubules and its ubiquitin ligase activity
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regulates the ubiquitin-speciWc modiWcation and degradation
of the microtubule-associated catalytic subunit of protein
phosphatase 2Ac (PP2Ac; Trockenbacher et al. 2001). PP2A
is an important player in the mTOR pathway: opposing
mTOR kinase, PP2A dephosphorylates 4E-BP1 and S6K1,
and thereby down-regulates translation of mRNAs contain-
ing oligopyrimidine tracts at their 5� transcription start site,
so-called 5�TOP sequences (reviewed in Jacinto and Hall
2003). In OS patients, MID1-mediated regulation of PP2Ac
turnover is disrupted, which leads to hypophosphorylation of
PP2A targets (Short et al. 2002; Trockenbacher et al. 2001).

Proper ventral midline development requires the estab-
lishment of cellular asymmetry and cell polarity, which, in
turn, requires the targeting of mRNAs to speciWc cellular
regions (Bashirullah et al. 1998; Dreyfuss et al. 2002;
Lasko 1999; Mohr and Richter 2001). While several mech-
anisms have been proposed for the achievement of region-
speciWc clustering of proteins, both the active transport of
mRNAs along the cytoskeleton and compartmentalised
protein translation in mRNA-containing protein complexes
(mRNP complexes) appear to be essential (reviewed in
Bassell and Singer 2001; Condeelis and Singer 2005; Pok-
rywka and Stephenson 1995). In addition, mRNPs are
involved in suppressing premature translation of localised
mRNAs, and only when the transcripts have reached their
proper destinations, a switch takes place and the mRNPs
induce translation of their mRNA cargoes (Nakamura et al.
2004; Webster et al. 1997; Zalfa and Bagni 2005). In this
way, mRNPs help to keep separate the processes of mRNA
transport and translation.

Here, we demonstrate that the PP2Ac regulator MID1
interacts with elongation factor 1� (EF-1�), another impor-
tant regulatory factor of protein translation. Mutant MID1
proteins as found in OS patients cannot bind EF-1�, sug-
gesting an important role of this interaction in the develop-
ment of the ventral midline. Furthermore, MID1, the
regulatory PP2A subunit �4 and EF-1� seem to be at the
core of a large microtubule-bound multiprotein complex
that associates with RNA and with several other factors
involved in mRNA transport and translational control, thus
forming a ribonucleoprotein (RNP) complex. Our data sup-
ports a novel function of MID1 in directing mRNP com-
plex-associated protein translation regulation to the
cytoskeleton, malfunction of which would explain the
observed developmental malformations in OS.

Materials and methods

Antibodies

Anti-MID1 and anti-�4 antibodies have been described pre-
viously (Schweiger et al. 1999; Trockenbacher et al. 2001).

Antibodies against ribosomal proteins were prepared as
described (Lutsch et al. 1990). Commercially available
antibodies were used for the detection of Hsc70 and Hsp90
(both from Stressgene), EF-1� (Upstate), NPM (Zymed),
RACK1, ANXA2 (both from BD Biosciences), Tubulin �/�
(Serotec), anti-HuR (Santa Cruz Biotechnologies), mono-
clonal anti-FLAG (Stratagene) and anti-hnRNPA1 (Sigma).

Constructs

The sequence encoding a 44 amino acid peptide (aa236-
aa280) of the �4 protein was cloned between the BglII and
BamHI sites of the PinPointTM Xa vector (Promega). Sub-
sequently, an oligonucleotide coding for a 6x His-RGS-
TAG was added between the BamHII and HindIII sites. The
MID1 open reading frame was cloned between the EcoRI
and HindIII sites of the multiple cloning site of the pCMV-
Tag2a-Vector (Stratagene).

Full length MID1 cDNA (NM_000381) was cloned in
frame in pECFP-C1 (Clontech) using XhoI–SalI sites trans-
lating in an MID1 protein expressed as fusion to the C-ter-
minus of ECFP. Full length EF-1� (NM_001402) was
cloned into pBudCE4.1 (Invitrogen) using SalI–BamHI
sites translating in an EF-1� protein expressed as fusion to
the N-terminus of myc-tag.

Yeast two-hybrid analysis

Screening was performed according to the manufacturer´s
protocol (Stratagene Cytotrap-System). For mapping the
protein interaction sites on MID1, we also used the yeast
two-hybrid CytoTrap system from Stratagene. Full length
and truncated MID1 cDNA were cloned into the pSOS vec-
tor and full-length EF-1� cDNA into the pMYR vector.
Both vectors were then co-transfected into the cdc25H
yeast strain and the transformants were plated on synthetic
medium lacking leucine and uracil (leu- ura-) containing
dextrose and incubated at 24°C for 4–5 days. To test
whether the two proteins interact, positive colonies were
replica plated on SD (leu- ura-) plates containing dextrose
and galactose, respectively, and incubated at 37°C for
6–10 days. Growth at 37°C on galactose plates indicated
protein interaction, while plates containing dextrose served
as control for temperature revertants.

ImmunoXuorescence and image acquisition

COS-7 were transfected with pECFP-MID1 and pBud-EF-
1�-myc on coverslips. At 24 h after transfection, the cells
were Wxed in ice cold methanol (20 min, at ¡20°C),
pre-incubated for 30 min in 5% normal goat serum (Invitro-
gen), and incubated overnight with primary rabbit poly-
clonal to myc-tag antibody (Abcam ab106–100; dilution
123
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1:400) in PBS containing 0.2% BSA. The cells were
washed Wve times in the same buVer and incubated for 1 h
with Alexa Fluor 595 goat anti-rabbit (Molecular Probes,
1:4000) as secondary antibody. After washing, the cells
were mounted on glass slides with Mowiol and visualised
with an Olympus BX50 microscope equipped with Wlter
cubes (Chroma) optimised for ECFP and Alexa Fluor 595.
Images were captured in black and white, colourised, and
merged to show the relative distribution of both stains.

Tissue culture and immunoprecipitation

HeLa cells were transfected with lipofectamine following
the manufacturer´s (Invitrogen) protocol. After 48 h, the
cells were homogenised by sonication in Hepes-Sucrose
buVer (HS, 4 mM Hepes, 0.32 M sucrose), containing
150 mM NaCl and a cocktail of proteinase inhibitors (com-
plete mini, Roche), and centrifuged for 15 min at 12,000g
at 4°C. Cytosolic extract, 1 mg, was immunoprecipitated
with 40 �l anti-FLAG M2-coated beads (Sigma) in 1 ml HS
buVer overnight. The beads were washed three times for
10 min at 4°C with HS buVer and eluted for 45 min with
3£ FLAG peptide (Sigma). Co-immunoprecipitated pro-
teins were analysed on 10% SDS-gels using the corre-
sponding antibodies.

Endogenous immunoprecipitation with cytosolic cell
lysates was performed overnight with 5 �g of EF-1� anti-
body or mouse IgG and 40 �l of protein-G slurry (Roche)
in HSMN buVer (HS buVer supplemented with 5 mM
MgCl2, 100 mM NaCl) containing 0.5% NP-40. After
washing three times with HSMN buVer as above, bound
proteins were boiled and analysed with the diVerent anti-
bodies on a Western blot.

AYnity chromatography

Recombinant 44 aa peptide was overexpressed in E.coli in
the presence of 2 �M biotin, lysed in native conditions
lysis buVer (50 mM NaH2PO4, 300 mM NaCl, 10 mM
imidazole, pH 8.0) with multiple thaw and freeze cycles
and puriWed using Ni-NTA agarose according to the manu-
facturer’s protocol (QiaExpressionistTM, Qiagen). Biotin-
ylated peptide, 50 �g, in binding buVer was incubated with
250 �l of streptavidin-coated agarose slurry (PIERCE,
ProFoundTM Pull-Down kit) for 1 h at 4°C rotating in a
500 �l reaction, blocked with free biotin for 5 min, washed
with HS buVer and blocked with 1 mg/ml BSA overnight
at 4°C. After washing with 100 volumes of HS and 2 vol-
umes of washing buVer (250 mM NaCl, 0.05% Tween),
the column was incubated with cytoplasmic HeLa extract
from 3 £ 107 cells, previously subjected to �4 knockdown,
at 4°C overnight, again washed with 100 volumes of HS
and 2 volumes of washing buVer and eluted 3 £ 15 min

with excess of free, thrombin-digested 44 aa peptide pro-
duced with a pET32a system (Novagen). Elution fractions
were dialysed against 20 mM Tris–HCl, pH 8.0, run on a
10% SDS gel and stained with colloidal Coomassie as
previously described (NeuhoV et al. 1988). SpeciWc bands
were excised, trypsinised and analysed with mass
spectrometry.

Mass spectrometry

The peptide mixture was identiWed by chromatographic
separation on an LC Packings 75 �m PepMap C18 column
(Dionex, Idstein, Germany) using a capillary liquid chro-
matography (CapLC) system delivering a gradient to for-
mic acid (0.1%) and acetonitrile (80%). Eluted peptides
were ionised by electrospray ionisation on a Q-TOF hybrid
mass spectrometer (Micromass, Manchester, UK). The
mass spectral data were processed into peak lists containing
the m/z value, charge state of the parent ion, fragment ion
masses and intensities, and correlated with the SwissProt
database using Mascot software (Perkins et al. 1999).

In vitro assembly of microtubules

Microtubules were polymerised in vitro from 3 £ 107 HeLa
cells according to previously reported protocols (Kimble
et al. 1992; Vallee 1982) at 37°C. As control, a sample was
continuously maintained under cold-shock conditions.
After puriWcation, microtubule-associated proteins were
analysed by Western blot with the corresponding panel of
antibodies.

siRNA transfection

According to Invitrogen´s protocol, 4 £ 105 HeLa cells/
75 cm2 tissue culture were grown in DMEM medium with
10% foetal bovine serum and transfected with 40 �l of
20 �M �4 siRNA (sense: GUACCUUUUGGUGCCA
GCG) or non-silencing oligonucleotides and 40 �l of Oligo-
fectamineTM (Invitrogen) in OptiMEM. After 48 h, the
cells were harvested and the eYciency of the knockdown
was tested by Western blotting with a speciWc antibody
against �4.

RNA-protein binding assays

HeLa cells were homogenised in HSMN buVer with pro-
teinase inhibitors (Roche) and Prime RNase inhibitor
(Eppendorf) in a Potter-Elvehjem. Cytosolic fractions were
cleared by centrifugation for 15 min at 12,000g. Protein
binding assay with homoribopolymers was performed as
described previously (Kiledjian and Dreyfuss 1992; Siomi
et al. 1993).
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MID1 complex immunoprecipitation, RNA extraction 
and RNA labeling

Cytosolic extracts, 4 mg, from HeLa cells overexpressing
MID1-FLAG homogenised in TKM buVer (20 mM Tris,
150 mM KCl, 5 mM MgCl2) supplemented with proteinase
inhibitors and 0.1% NP40 were precleared with 25 �l of pro-
tein-A/G agarose (Roche) and 10 �g of mouse IgG for 1.5 h
at 4°C on a rocking platform. The beads were pelleted by
centrifugation for 1 min at 3,000 rpm at 4°C and discarded.
The supernatant was immunoprecipitated with 75 �l of anti-
FLAG® M2 aYnity gel (Sigma-Aldrich) overnight. Anti-
FLAG® M2 agarose matrix had been previously equilibrated
in TKM buVer, blocked with 1 mg/ml BSA for 30 min and
washed again with TKM buVer. Immunoprecipitated com-
plexes were washed three times with 500 �l TKM buVer
supplemented with 0.2 % NP40 for 10 min at 4°C. Bound
proteins were eluted for 45 min with 200 �l of 3£ FLAG
peptide and, after keeping an aliquot for Western blot,
treated with 10 units of DNase I for 30 min at 37°C and sub-
sequently, with 100 �g proteinase K for 20 min at 37°C.
Bound RNA was isolated by phenol/chloroform extraction,
followed by ethanol precipitation. For RNA-labeling, 8 �l of
the extracted RNA were labelled using 2 �l of RNA ligase
and 30 �Ci of cytidine 3�,5�-bis(phosphate) (pCp; 5�-32P-
labelled; PerkinElmer Life Sciences) in a Wnal volume of
20 �l and incubated for 2 h at 37°C, as previously described
(Filipenko et al. 2004). Labeled RNA was puriWed through a
NucAway™ spin column (Ambion) and 2 �l was loaded on
an 1% agarose gel for qualitative analysis. The gel was dried
under vacuum, and the labelled RNA was visualised by
autoradiography. In addition, incorporation of the pCp label
was assessed quantitatively by scintillation counting. As
control, the same procedure was performed with cell lysates
overexpressing the empty FLAG vector. In addition to the
labeling, cDNA was synthesised using random primers and
this was subsequently used for RT-PCR with primers from
the coding region of the MID1 gene (F: 5�-CAT GCG CGT
TTC CTA CAG AC-3�; R: 5�-GCC TCT TAA TGT GCA
CCA AG-3�; nested: F: 5�-TCG AAA ACT GAA GGT
GTC CC-3�, R: 5�-TCA CGG CAG CTG CTC TG-3�) and
as negative control PIP (NM_002652; F: 5�-CTC CTG GTT
CTC TGC CTG-3�, R: 5�-GAC CAC AGC AGA AAT TCC
AG-3�; nested: F: 5�-CAA CAA AGC TCA GGA CAA
CAC-3�, R: 5�-GAG GAA ATC ACC TGG GTG TG-3�).
This time as negative control for the immunoprecipitation,
HeLa lysates containing overexpressed FLAG-MID1 were
pulled down with mouse IgG.

mRNA in situ hybridisation

U373 cells grown on coverslips were washed with 1.2£
PEM (120 mM Pipes, 6 mM EGTA, 2.4 mM MgCl2, pH

7.0) under microtubule-preserving conditions, Wxed with 4%
paraformaldehyde, washed with PBS and permeabilised in
70% EtOH overnight. After washing in 2£ SSC, 50% form-
amide for 5 min, the coverslips were incubated overnight at
37°C with six diVerent 5�-Dig labeled MID1 oligonucleo-
tide probes (37.5 ng each; for sequences see Table S1) or a
5�-Dig labeled nonsense oligonucleotide (225 ng total) as a
negative control in hybridisation buVer (2£ SSC, 50%
formamide, 0.02% BSA, 1 �g/�l yeast tRNA, 10% dextran
sulphate). Subsequently, coverslips were washed twice in
2£ SSC with 50% formamide for 30 min at 37°C and incu-
bated with alkaline phosphatase coupled anti-Dig antibody
(Roche) at a concentration of 1:500 overnight at 4°C. For
co-staining of the centrosome, coverslips were incubated
with a monoclonal antibody directed against �-tubulin
(1:1,000; Sigma-Aldrich) for 1 h at room temperature. On
the next day, the coverslips were washed twice with 2£
SSC, 8% formamide, once with alkaline phosphatase buVer
(100 mM Tris pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1%
Tween20) and once with alkaline phosphatase buVer con-
taining levamisole at room temperature. For detection, the
coverslips were incubated with NBT/BCIP overnight at 4°C
and mounted with Vecta-DAPI.

Results

MID1 directly interacts and colocalises with EF-1�

In order to identify novel protein interaction partners of the
MID1 protein, we screened a CytoTrap®XR Human Pros-
tate cDNA Library (MID1 is highly expressed in prostate
tissue; http://symatlas.gnf.org/SymAtlas/) with a pSOS+
MID1-Cterm construct using the CytoTrap yeast two-hybrid
system. The pSOS+MID1-Cterm construct contained the
C-terminus of MID1 from amino acid 309 to amino acid
667 and was chosen to avoid pick-up of proteins that are
known to interact with the N-terminus of MID1 (Trockenb-
acher et al. 2001). Interestingly, this method identiWed two
full-length EF-1� (NM_001402) clones that could be con-
Wrmed to show speciWc interaction with MID1. The interac-
tion site on MID1 was mapped to the SPRY/PRY domain at
the C-terminus of MID1, namely to amino acids 474–667,
by yeast two-hybrid assays (Fig. 1a). Further corroboration
for the interaction of MID1 with EF-1� was achieved by
showing co-localisation of EF-1� with the microtubule-
associated protein MID1 by immunoXuorescence (Fig. 1c).
While overexpression of EF-1� alone in COS-7 cells
resulted in a mostly diVuse staining in the cytosol,
co-expression with full-length MID1 in the same cells
resulted in a marked shift of EF-1� to the cytoskeleton,
clearly indicating a scavenging of EF-1� to the microtu-
bules by its binding to MID1.
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By contrast, two diVerent mutant MID1 constructs failed
to show interaction with EF-1� in a yeast two-hybrid experi-
ment (Fig. 1b). Both clones contained the entire MID1 open
reading frame, but carried point mutations, which have
been previously identiWed in OS patients, and led to a C-
terminal truncation of the protein [insertion of a G at nucle-
otide position 1558 (Quaderi et al. 1997) and a deletion of
four nucleotides at position 1800 (Schweiger et al. 1999)].
This conWrms that the EF-1� binding domain in MID1 is at
its C-terminus and suggests an important role for this pro-
tein interaction in the pathogenesis of OS. Moreover, it
gives further evidence of the speciWcity of the yeast two-
hybrid experiments, since it was shown that a single point
mutation in MID1 inhibits yeast growth.

IdentiWcation of components of the MID1/�4 protein 
complex

Interaction of the MID1 protein with �4 has previously
been demonstrated (Trockenbacher et al. 2001). Using
deletion analysis guided by domain prediction (Schnei-
der 1992), we narrowed the MID1 protein-binding region
of �4 to a 44 amino acid (aa) peptide between aa 236 and
280. To identify proteins able to interact with the MID1/
�4 complex, this peptide was immobilised to a column,
and aYnity chromatography was performed using HeLa
cell lysates. To avoid competition between endogenous
�4 and the immobilised peptide, �4 was down-regulated
by RNA interference (RNAi) in the cells prior to lysate

Fig. 1 a EF-1� interacts with 
the MID1 protein. a Deletion 
mapping of the EF-1� binding 
site on the MID1 protein in a 
yeast two-hybrid assay. While 
two C-terminal peptides (aa 311- 
aa 667 and aa 474- aa 667) show 
clear binding to EF-1� full-
length protein, no binding was 
seen with any of the shorter con-
structs, as indicated on the right 
panel by the appearance or lack 
of yeast growth, respectively. 
b Yeast two-hybrid interaction 
assay between EF-1� full-length 
and two mutated MID1 variants 
as found in Opitz syndrome pa-
tients. Both MID1 mutations re-
sult in a frame shift and a 
truncation of the resulting MID1 
proteins. The upper MID1 vari-
ant harbours a 4 bp deletion at 
position 1800 and the lower one 
a G-insertion at position 1558 
resulting in a wrong reading 
frame after amino acid 600 and 
519, respectively (arrows), the 
hatched regions indicate the 
amino acid sequence corre-
sponding to the wrong reading 
frame until the Wrst stop codon is 
reached. On the right panel the 
respective parts of the yeast 
plates are shown; they show no 
growth and hence no interaction. 
c ImmunoXuorescence micros-
copy of COS-7 cells transiently 
transfected with ECFP-MID1 
and EF-1� (upper panel) and 
EF-1� alone (lower panel). The 
distribution of EF-1� when ex-
pressed alone shows a diVuse 
cytoplasmic staining patter, 
whereas co-expressed with 
ECFP-MID1 it co-localises with 
ECFP-MID1 at the microtubules
123
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production (Fig. 2a). After extensive washing, speciW-
cally bound proteins were eluted from the column with
an excess of free 44 aa peptide, separated on an SDS gel
and stained with colloidal Coomassie. As control experi-
ment, lysates of HeLa cells after �4 knockdown were
passed through a column without peptide. Proteins spe-
ciWcally eluting from the peptide column were extracted
from the gel and analysed by electrospray ionisation
(ESI) mass spectrometry (Fig. 2b). Interestingly, in addi-
tion to the tubulin beta-5 chain, a known interaction part-
ner of MID1 (Schweiger et al. 1999), EF-1� was puriWed
on the aYnity chromatography column and identiWed
in the mass spectrophotometer, conWrming the yeast

two-hybrid and immunoXuorescence results. Besides
that, several 40S ribosomal proteins [S8, S3, 40S ribo-
somal protein SA (p40)], and ribosome- and translation-
associated proteins [receptor of activated protein kinase
C1 (RACK1), Nucleophosmin (NPM), heat shock cognate
71kDa protein (Hsc70), heat shock protein HSP90-beta
(Hsp90�), heat shock protein 60 kDa, Q subcomponent
binding protein (C1qBP)] were identiWed in approxi-
mately equimolar ratios (Fig. 2b, Table 1), suggesting a
translation related function for this complex. This
hypothesis is consistent with the additional presence of
mRNA-binding proteins such as NPM and Annexin A2
(ANXA2) in the complex.

Fig. 2 a Knockdown of �4 protein in HeLa cells- �4 protein in HeLa
cell lysates after transfection with a speciWc �4 RNAi oligonucleotide
(�4, Wrst lane) or a non-silencing oligonucleotide (ns, second lane) are
shown. Detection of actin was used as loading control. b SDS-gel
stained with colloidal Coomassie showing the proteins eluted from
streptavidin beads coupled to a biotinylated 44 aa �4 peptide (left lane)
or from unmodiWed beads (right lane). DiVerential bands were excised
and analysed by mass spectrometry. Protein identities are given. The
asterisk indicates the position of the MID1 protein band, which is
masked by an abundant E. coli band derived protein band contaminat-
ing the eluting peptide (also present in the control). c Co-immunopre-
cipitation of FLAG-MID1 with diVerent components of the complex.
HeLa cell lysates overexpressing FLAG-MID1 were immunoprecipi-

tated with anti-FLAG antibody (left lane). Western blots were incu-
bated with speciWc antibodies against the respective proteins. HeLa
cell lysates without FLAG-MID1 overexpression were used as back-
ground control (right lane). d Co-immunoprecipitation of endogenous
EF-1� with MID1, �4, Hsp90 and Hsc70. HeLa cell lysates were
immunoprecipitated with anti-EF1� (lanes 1 and 3) or with unspeciWc
IgGs (lanes 2 and 4). Input lysates (lanes 1 and 2) and immunoprecip-
itates (lanes 3 and 4) were loaded on an SDS-Page and analysed with
anti-EF-1�, anti-MID1, anti-�(, anti-Hsp90 and anti-Hsc70 antibodies.
e Microtubule-association of the complex partners. Pellets from micro-
tubule-assembly experiments at 37°C (left lane) and 4°C (right lane)
were dissolved and loaded on a Western blot and detected with the
respective antibodies
123
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To conWrm speciWc interactions of the identiWed proteins
with MID1, we overexpressed FLAG-tagged MID1 (FLAG-
MID1) in HeLa cells and performed co-immunoprecipita-
tion (IP) experiments using agarose beads coated with anti-
FLAG antibody. Immunoprecipitates were analysed on a
Western blot using antibodies detecting the respective
endogenous proteins. Immunoprecipitated cell lysates of
HeLa cells containing the empty vector were used as a con-
trol for background. SpeciWc co-precipitation of each of the
identiWed proteins with FLAG-MID1 was observed
(Fig. 2c). As a control for the speciWcity of the immunopre-
cipitation, we used an antibody detecting hnRNPA1, which
was not present in any of the pull downs (data not shown).

For further in vivo evidence, EF-1� was immunoprecipi-
tated using either a speciWc anti-EF-1� antibody or unspe-
ciWc mouse immunoglobulins (IgGs) as negative control.
Immunoprecipitates were analysed with speciWc anti-
MID1, anti-�4, anti-Hsp90 and anti-Hsc70 antibodies
detecting the endogenous proteins. All proteins analysed
were enriched when the complex was immunoprecipitated
with the anti-EF-1� antibody (Fig. 2d), therefore proving
co-precipitation of these proteins.

Furthermore, in conWrming our previous Wndings regard-
ing MID1 (Schweiger et al. 1999), all investigated compo-
nents of the complex, including EF-1�, were enriched in
pelleted puriWed microtubules, corroborating association of
the complex with microtubules (Fig. 2e). After ultracentri-
fugation of HeLa cell lysates in order to remove insoluble
proteins, we performed puriWcation of microtubules at both
37 and 4°C. While examination at 37°C allows eYcient
repolymerisation of depolymerised microtubules as a basis
for the enrichment of puriWed microtubules, cold-shock
conditions at 4°C inhibit microtubule-polymerisation
(Rubin and Weiss 1975). Bands detected with all relevant
antibodies were exclusively present or much stronger in the
fraction containing puriWed microtubules as compared to
the cold-shocked fraction (Fig. 2E, right lane).

The MID1/�4 complex associates with RNA

EF-1� association with MID1 and integration of RNA-
binding proteins such as NPM, RACK1 and ANXA2 in the
complex suggested that RNA might also be present. To Wnd
out whether the MID1 complex associates with RNA in
vivo, FLAG-MID1 from cytosolic fractions of FLAG-
MID1 overexpressing and, as control, non-overexpressing
HeLa cells were immunoprecipitated using an anti-FLAG
antibody. After protein and DNA digestion, RNA was
extracted from the eluted fractions, labelled with [5�-
32P]pCp, and analysed in a scintillation counter and by aga-
rose gel electrophoresis. As expected, this experiment
revealed a marked enrichment of RNA in the speciWc
immunoprecipitate in comparison to the control (Fig. 3).

The MID1/�4 complex associates preferentially 
with poly-rG homoribopolymers

To analyse if the RNA-binding activity of the identiWed
complex shows some sequence speciWcity, cytosolic frac-
tions from FLAG-MID1 overexpressing HeLa cells were
incubated with agarose immobilised RNA homoribopoly-
mers (poly-rA, -rU, -rC and -rG). Similar assays have been
previously used for the characterisation of RNA-binding
properties of many RNA-binding proteins (Filipenko et al.
2004; Siomi et al. 1993). After extensive washing, the
bound proteins were eluted and analysed by Western blot.
Using the respective antibody panel, speciWc bands corre-
sponding to FLAG-MID1, Hsp90, Hsc70, EF-1�, �4 and
RACK1 could be detected in the poly-rG sample, again
conWrming co-fractionation of these proteins. Fainter bands
were seen in the poly-rU sample, while almost no bands
appeared in the poly-rA or poly-rC sample, proving the
speciWcity of the reaction (Fig. 4a). To discard the possi-
bility that the enrichment in the poly-rG and poly-rU

Fig. 3 The MID1 protein complex associates with RNA. Cytosol of
HeLa cells with (FLAG-MID1) and without (control) FLAG-MID1
overexpression were immunoprecipitated using an anti-FLAG anti-
body. Immunoblots of lysates (upper left panel) and immunoprecipi-
tates (upper right panel) probed with an anti-FLAG antibody are
shown. RNA was isolated from the samples, labelled with [5´-32P]pCp
and analysed on an agarose gel (lower left panel) and in a scintillation
counter (lower right panel)
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fractions were unspeciWc or an artefact, we tested the same
blot with an antibody detecting the well-known poly-rU
binding HuR protein (Lopez de Silanes et al. 2004). As
expected, HuR was found to predominantly associate with
poly-rU and faintly with poly-rG homoribopolymers.
Increasing concentrations of free poly-rG (bound:free, 1:1
and 1:10) as well as of salt (250 and 500 mM NaCl) and
heparin (1 and 2 mg/ml) signiWcantly reduced the binding
of FLAG-MID1 protein to poly-rG coated beads (Fig. 4b),
additionally proving speciWcity of the binding.

The MID1 protein complex assembles its own mRNA

Association of mRNPs with mRNAs coding for proteins
that are components of the respective complexes is a widely
observed phenomenon. Knowing that mRNA localisation
to the cytoskeleton is often driven by sequences found in
the 3´UTR (Lopez de Heredia and Jansen 2004), we
screened the 3�UTR of the MID1 gene for G-rich and U/T-
rich regions and interspecies conservation of those. Inter-
estingly, we could detect six diVerent regions that were
both G- and/or U/T rich, and also highly conserved
between human, dog and rat (Fig. 5a), which make them
putative candidates responsible for the binding to the
MID1/PP2A mRNP complex.

Consequently, in order to check if MID1 mRNA is incor-
porated into the MID1 mRNP complex, we overexpressed

FLAG-MID1 in HeLa cells and immunoprecipitated the
protein with an anti-FLAG antibody. RNA was extracted
from the immunoprecipitate, and cDNA was synthesised
and used for RT-PCR using MID1 speciWc primers. A spe-
ciWc band covering from exon 4 to the 3�UTR of the MID1
gene could be ampliWed in the anti-FLAG containing
sample, while no band was detected in the negative
control, reactions of which were performed with unspeciWc

Fig. 4 Association of FLAG-MID1 and some of the complex partners
with poly-ribonucleotides. a Lysates from FLAG-MID1 overexpress-
ing HeLa cells were incubated with immobilised poly-rU (lane 2),
poly-rG (lane 3), poly-rC (lane 4) or poly-rA (lane 5), washed and
boiled at 95°C. Lysate (lane 1) and eluted fractions were immunoblot-
ted and analysed with the respective antibodies. Poly-rU binding HuR
protein was used as control. b InXuence of free poly-rG and poly-rU
competitors and increasing salt or heparin concentrations on the
FLAG-MID1/poly-rG interaction

Fig. 5 The MID1 complex assembles its own mRNA. a G and U-rich
sequences present in the MID1 3�UTR that show a high interspecies
conservation. Positions 3� to the translational stop codon are (from top
to bottom) 3101, 3172, 185, 1502, 2441 and 2644 bp. Accession num-
ber NM_000381. b HeLa cells were transfected with FLAG-MID1 and
subjected to RNP coimmunoprecipitation. Subsequently, RNA was
isolated from the precipitation and subjected for RT-PCR using MID1
and PIP-speciWc primers. Immunoprecipitation was done with mouse
IgG as a negative control. c The MID1 mRNA localises to the centro-
somal region. The endogenous MID1 mRNA was detected in U373
cells by in situ hybridisation using a pool of six diVerent digoxigenin-
labelled oligonucleotides speciWc for the MID1 sequence and alkaline
phosphatase-linked anti-digoxigenin antibody with NBT/BCIP as sub-
strate. The centrosome was co-stained by a mouse anti-�-tubulin anti-
body and an FITC-linked anti-mouse antibody (see arrows). n nucleus,
c cytoplasm
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immunoglobulins instead of with a speciWc anti-FLAG
antibody. Also, no speciWc band was detected after ampliW-
cation with primers speciWc for PIP, which was randomly
chosen and did not associate with the MID1 mRNP com-
plex (Fig. 5b).

Binding of endogenous MID1 mRNA to the MID1 pro-
tein complex would imply that it is located at the microtu-
bules. To determine MID1 mRNA localisation, we
performed an RNA in-situ hybridisation using digoxigenin-
labelled oligonucleotides complementary to speciWc MID1
sequences. Interestingly, we could show clear co-localisa-
tion of the MID1 mRNA with the centrosome as conWrmed
by a �-tubulin stain. As a control, we used an antisense
probe, which showed no deWned localisation, conWrming
the speciWc association of the MID1 mRNA with the micro-
tubule-organising centre (Fig. 5c).

Discussion

The MID1/�4 complex associates with several factors 
involved in translation regulation

We have identiWed several new members of the MID1/�4
complex, dysfunction of which underlies the pathogenesis
of OS. In addition to its previously characterised associa-
tion with tubulin (Schweiger et al. 1999), we have shown
here that the MID1/�4 complex also interacts with EF-1� as
well as with the 40S ribosomal proteins S3 and S8. More-
over, NPM, RACK1 and p40 (precursor molecule of the
laminin receptor), all of which have previously been found
to associate with the 40S ribosomal subunit and/or to have a
central role in translational control (Ford et al. 1999; Nils-
son et al. 2004; Okuwaki et al. 2002), co-puriWed with this
protein complex. Of note, EF1-�, a well-known and essen-
tial player in protein translation and an important polyso-
mal component with RNA-binding properties, was
independently identiWed in a yeast two-hybrid screen with
MID1 as bait and showed perfect co-localisation with
MID1 at the microtubules. Interaction of MID1 and EF-1�
in the yeast two-hybrid system was abolished by a single
point mutation. Furthermore, co-precipitation of both
proteins was demonstrated (1) after overexpression and
immunoprecipitation of FLAG-MID1, (2) after immuno-
precipitation of endogenous EF-1� and (3) in a microtu-
bule-assembly assay. While EF-1� is one of the most
abundant proteins in the cell and is known to artiWcially
show up in large-scale screens searching for protein–pro-
tein interaction, our data as a total gave very strong evi-
dence for a speciWc and biologically relevant interaction
between MID1 and EF-1�.

In this study, we could narrow the domain that is respon-
sible for the interaction between MID1 and EF-1� to the

SRPY/PRY domain in the C-terminus of the MID1 protein.
Regarding the numerous cellular functions that proteins
with SRPY/PRY domains perform (Meroni and Diez-Roux
2005; Rhodes et al. 2005), it would be interesting to see if
EF-1� also interacts with others of these proteins.

We also showed that the MID1/�4 complex associates
with RNA, particularly with poly-rG and poly-rU
sequences, suggesting a speciWc association of the complex
with a subset of RNAs. Further IP experiments, sequential
microtubule preparations and immunoXuorescence collec-
tively establish that the MID1/�4/PP2A complex forms part
of the core of a microtubule-associated multiprotein com-
plex including several translation factors and RNA, sug-
gesting that it might inXuence the protein synthesis of
associated mRNAs. Interestingly, neither the MID1 protein
itself nor the �4 protein or PP2A contain one of the known
RNA-binding domains (according to the program RNA-
BindR: http://bindr.gdcb.iastate.edu/RNABindR), which
suggests that other interaction partners with RNA-binding
properties, like EF-1� (Lamberti et al. 2004), NPM (Yang
et al. 2002), RACK1 (Angenstein et al. 2002) and/or
ANXA2 (Filipenko et al. 2004) are the RNA-binding com-
ponents in the complex and interactions between FLAG-
MID1 and rG and rU homoribopolymers or the MID1
mRNA are indirect associations.

The fact that MID1 and its protein complex partners
interact with the MID1 mRNA points at a putative feedback
regulatory role MID1 has on its own synthesis. In an RNA
in-situ hybridisation experiment, we saw that the endoge-
nous MID1 mRNA localises to the microtubule-assembly
centre. This suggests association of higher concentrations
of the lowly expressed MID1 mRNA (and also possibly of
the MID1 mRNP) to polymerising tubulin and to the minus
end of microtubules rather than to the rest of the microtu-
bules or a random distribution along the microtubules at
equal concentrations. Similar to what is known of other
mRNAs encoding embryonic patterning proteins that asso-
ciate with centrosomes, it could further mean that the cen-
tromere is used to ensure asymmetric sorting of the MID1
mRNA subsequent to cell division (Lopez de Heredia and
Jansen 2004).

mRNA localisation is mainly mediated by speciWc
sequences in 3�UTRs (Lopez de Heredia and Jansen 2004).
The MID1 mRNP complex has been seen to bind rG- and
rU-rich sequences. Several rG- and rU-rich sequences
within the MID1 3�UTR could be responsible for the bind-
ing of the mRNA to the MID1/�4/PP2A mRNP complex
(Fig. 5a). RNA-protein pull-down assays with in vitro tran-
scribed sequence motifs and/or an mRNA visualisation
assay based on GFP-MS2 fusion protein and mRNA fused
to MS2-binding sites, as developed by Singer et al. (Ber-
trand et al. 1998), could be used to identify the responsible
sequence motif in the future.
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Translational control unit at the microtubules

The protein composition of the MID1/�4 complex identi-
Wed by mass spectrometry points to a newly found microtu-
bule-associated process that links the control of the
translation of speciWc, microtubule-associated mRNAs with
elements of the mTOR / PP2A signalling cascade. Several
of the identiWed components of the MID1 mRNP complex
have been brought into context with microtubules and
microtubule-associated translation regulation previously.
Thus, the cytoskeleton-associated pool of EF-1� is involved
in bundling, stabilising and promoting the assembly of
microtubules (Kumagai et al. 1999; Moore and Cyr 2000;
Moore et al. 1998; Ohta et al. 1990; Shiina et al. 1994).
Interactions with polo domain-containing kinases at the
mitotic spindle and centrosomes have been demonstrated
for Hsp90 (de Carcer et al. 2001) and NPM (Zhang et al.
2004), and close cooperation between NPM and CDK2/
cyclin E in centrosome duplication has been observed
(Okuda 2002; Okuda et al. 2000). In addition, in fraction-
ated protein preparations, most RACK1 molecules co-
purify with the cytoskeleton (Hermanto et al. 2002), and
ANXA2 is one of the most abundant proteins in cytoskele-
ton-bound polyribosome fractions (Vedeler and Hollas
2000).

The MID1 translation control unit and development 
of the ventral midline

Dysfunction of the MID1/�4 complex results in numerous
fusion defects of the ventral midline, which is normally
established through migrating and polarising cells that rely
heavily on protein gradients (Schweiger and Schneider
2003). Therefore, we hypothesise that MID1-containing
mRNP complexes are involved in the regulation of local-
ised synthesis of proteins needed in asymmetric concentra-
tions at the poles of these cells. Interestingly, MID1 mutant
proteins, such as those that have been identiWed in patients
with OS, lose the ability to interact with EF-1�, strongly
supporting a role for the complex in protein translation.
Consequently, defective regulation of translation of the
associated mRNAs could result in a phenotype reminiscent
of OS.

Interestingly, several of the proteins identiWed as interac-
tion partners of the microtubule-associated MID1/�4 com-
plex have been involved in cell polarisation and cell
migration. For example, RACK1 has been found both in
cell-spreading centres in attached cells (de Hoog et al.
2004) and acting as a central switch in growth factor-
induced cell migration (Cox et al. 2003; Kiely et al. 2005).
Furthermore, like C1qBP, which is another member of the
MID1 protein complex, RACK1 interacts with activated
protein kinase C (PKC) isozymes, which are also central

players in the regulation of cell spreading and focal adhe-
sion assembly (Disatnik et al. 2002; Nance 2005; Storz
et al. 2000). ANXA2 was found to rapidly localise to
developing cell–cell contacts and to be essential for the for-
mation of Wlopodia at the leading edges of both migrating
Wbroblasts and epithelial cells (Hansen et al. 2002; Nobes
and Hall 1995). Finally, p40SA is the precursor of the Mr

67,000 laminin receptor that has been classiWed as the
prototypic cellular adhesion molecule for connecting cells
and basement membranes (Liotta 1986).

Our results also imply a close interaction of a microtu-
bule-associated translation control unit with PP2A and its
negative regulators �4 and MID1, all essential players of
mTOR signalling. The mTOR/PP2A pathway is known to
regulate the translation of 5�TOP-marked mRNAs via
phosphorylation of several important translation cofactors
such as 4E-BP1 and S6K1 (Duvel and Broach 2004; Fingar
and Blenis 2004; Peterson et al. 1999), and is also involved
in developmental processes.

In summary, in addition to its role in the ubiquitin-spe-
ciWc regulation of microtubule-associated PP2Ac, we now
Wnd that the MID1/�4 complex is the core of a microtubule-
associated mRNP complex that links cytoskeleton-associ-
ated mRNA transport and translation control factors with
members of the mTOR/PP2A signalling cascade: a perfect
scenario for the orchestration of complex gradient-con-
trolled processes. IdentiWcation of RNAs binding to the
MID1/�4/PP2A mRNP will shed further light into these
processes that take place during the development of the
ventral midline.
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