1,152 research outputs found

    Quantum renormalization group of XYZ model in a transverse magnetic field

    Full text link
    We have studied the zero temperature phase diagram of XYZ model in the presence of transverse magnetic field. We show that small anisotropy (0 =< Delta <1) is not relevant to change the universality class. The phase diagram consists of two antiferromagnetic ordering and a paramagnetic phases. We have obtained the critical exponents, fixed points and running of coupling constants by implementing the standard quantum renormalization group. The continuous phase transition from antiferromagnetic (spin-flop) phase to a paramagnetic one is in the universality class of Ising model in transverse field. Numerical exact diagonalization has been done to justify our results. We have also addressed on the application of our findings to the recent experiments on Cs_2CoCl_4.Comment: 5 pages, 5 figures, new references added to the present versio

    An analysis of the XOR dynamic problem generator based on the dynamical system

    Get PDF
    This is the post-print version of the article - Copyright @ 2010 Springer-VerlagIn this paper, we use the exact model (or dynamical system approach) to describe the standard evolutionary algorithm (EA) as a discrete dynamical system for dynamic optimization problems (DOPs). Based on this dynamical system model, we analyse the properties of the XOR DOP Generator, which has been widely used by researchers to create DOPs from any binary encoded problem. DOPs generated by this generator are described as DOPs with permutation, where the fitness vector is changed according to a permutation matrix. Some properties of DOPs with permutation are analyzed, which allows explaining some behaviors observed in experimental results. The analysis of the properties of problems created by the XOR DOP Generator is important to understand the results obtained in experiments with this generator and to analyze the similarity of such problems to real world DOPs.This work was supported by Brazil FAPESP under Grant 04/04289-6 and by UK EPSRC under Grant EP/E060722/2

    Oligomerization of Dicyclopentadiene Fraction Using Monosubstituted Titanium Chloride as a Catalyst

    Get PDF
    The purpose of this study is to investigate the dicyclopentadiene fraction of liquid pyrolysis product oligomerization with the use of the modified catalytic system based on titanium alkoxides. The choice of reaction catalyst is specified by searching the ways of obtaining petroleum resins with the improved performance characteristics and the possibility of low-temperature polymerization. The use of monosubstituted titanium chloride as a catalyst allows obtaining light resins, films on the base of which are smooth, glossy and have good technical characteristics: adhesion 1 point, resilience 10 cm

    Stable vortex and dipole vector solitons in a saturable nonlinear medium

    Full text link
    We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole vector solitons in a saturable nonlinear medium in (2+1) dimensions. We construct perturbation series expansions for the vortex and dipole vector solitons near the bifurcation point where the vortex and dipole components are small. We show that both solutions uniquely bifurcate from the same bifurcation point. We also prove that both vortex and dipole vector solitons are linearly stable in the neighborhood of the bifurcation point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition, we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.

    Deformed Oscillator Algebras and Higher-Spin Gauge Interactions of Matter Fields in 2+1 Dimensions

    Full text link
    We formulate a non-linear system of equations which describe higher-spin gauge interactions of massive matter fields in 2+1 dimensional space-time and explain some properties of the deformed oscillator algebra which underlies this formulation. In particular we show that the parameter of mass MM of matter fields is related to the deformation parameter in this algebra.Comment: LaTex, 12 pages, no figures; Invited talk at the International Seminar Supersymmetry and Quantum Field Theory dedicated to the memory of Dmitrij V. Volkov; Kharkov, January 1997; to appear in the proceeding

    Quantum information processing using Josephson junctions coupled through cavities

    Get PDF
    Josephson junctions have been shown to be a promising solid-state system for implementation of quantum computation. The significant two-qubit gates are generally realized by the capacitive coupling between the nearest neighbour qubits. We propose an effective Hamiltonian to describe charge qubits coupled through the cavity. We find that nontrivial two-qubit gates may be achieved by this coupling. The ability to interconvert localized charge qubits and flying qubits in the proposed scheme implies that quantum network can be constructed using this large scalable solid-state system.Comment: 5 pages, to appear in Phys Rev A; typos corrected, solutions in last eqs. correcte

    Magnetothermal Conductivity of Highly Oriented Pyrolytic Graphite in the Quantum Limit

    Full text link
    We report on the magnetic field (0TB9 \le B \le 9T) dependence of the longitudinal thermal conductivity κ(T,B)\kappa(T,B) of highly oriented pyrolytic graphite in the temperature range 5 K T\le T\le 20 K for fields parallel to the cc-axis. We show that κ(T,B)\kappa(T,B) shows large oscillations in the high-field region (B > 2 T) where clear signs of the Quantum-Hall effect are observed in the Hall resistance. With the measured longitudinal electrical resistivity we show that the Wiedemann-Franz law is violated in the high-field regime.Comment: 4 Figures, to be published in Physical Review B (2003

    Physical and electrical characteristics of EDM debris

    Get PDF
    AbstractIn EDM, debris plays a key role in the electrical conditions of the discharge gap prior to each spark. Despite this, analysis of debris at all length-scales has not yet been performed, and therefore the nature of debris produced by electrical discharge processes is not fully understood. In this study debris created by the machining of two electrode materials set as negative polarity, silicon and titanium carbide, was centrifuged and imaged using SEM and TEM. From this analysis it was shown that electrode debris is 1nm or lower and up to 10μm in size. Population analysis of the particle size distribution was used to inform an electric field model based on a lattice Boltzmann method framework, simulating the effect of the presence of such debris on the electric field strength. This method is shown to be able to capture the local variation of the electric field and predict qualitatively the correct trend of the electric field strength increasing against the debris concentration. Such data is important for prediction and control of discharge gap size, as well as understanding the impact of a build-up of debris on uncontrolled sparking

    Ferromagnetism in Oriented Graphite Samples

    Full text link
    We have studied the magnetization of various, well characterized samples of highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite to investigate the recently reported ferromagnetic-like signal and its possible relation to ferromagnetic impurities. The magnetization results obtained for HOPG samples for applied fields parallel to the graphene layers - to minimize the diamagnetic background - show no correlation with the magnetic impurity concentration. Our overall results suggest an intrinsic origin for the ferromagnetism found in graphite. We discuss possible origins of the ferromagnetic signal.Comment: 11 figure

    Deep electronic states in ion-implanted Si

    Get PDF
    In this paper we present an overview of the deep states present after ion-implantation by various species into n-type silicon, measured by Deep Level Transient Spectroscopy (DLTS) and high resolution Laplace DLTS (LDLTS). Both point and small extended defects are found, prior to any anneal, which can therefore be the precursors to more detrimental defects such as end of range loops. We show that the ion mass is linked to the concentrations of defects that are observed, and the presence of small interstitial clusters directly after ion implantation is established by comparing their behaviour with that of electrically active stacking faults. Finally, future applications of the LDLTS technique to ion-implanted regions in Si-based devices are outlined.</p
    corecore