166 research outputs found
Improved selectivity from a wavelength addressable device for wireless stimulation of neural tissue
Electrical neural stimulation with micro electrodes is a promising technique for restoring lost functions in the central nervous system as a result of injury or disease. One of the problems related to current neural stimulators is the tissue response due to the connecting wires and the presence of a rigid electrode inside soft neural tissue. We have developed a novel, optically activated, microscale photovoltaic neurostimulator based on a custom layered compound semiconductor heterostructure that is both wireless and has a comparatively small volume (<0.01 mm3). Optical activation provides a wireless means of energy transfer to the neurostimulator, eliminating wires and the associated complications. This neurostimulator was shown to evoke action potentials and a functional motor response in the rat spinal cord. In this work, we extend our design to include wavelength selectivity and thus allowing independent activation of devices. As a proof of concept, we fabricated two different microscale devices with different spectral responsivities in the near-infrared region. We assessed the improved addressability of individual devices via wavelength selectivity as compared to spatial selectivity alone through on-bench optical measurements of the devices in combination with an in vivo light intensity profile in the rat cortex obtained in a previous study. We show that wavelength selectivity improves the individual addressability of the floating stimulators, thus increasing the number of devices that can be implanted in close proximity to each other. © 2014 Seymour, Freedman, Gökkavas, Özbay, Sahinand Ünlü
Optical Spectra of SNR Candidates in NGC 300
We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular
objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter
Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting
the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from
optical spectra, we find that of 28 objects previously proposed as SNRs from
optical observations, 22 meet this criterion with six showing [SII]/Ha of less
than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated
with the 28 previously proposed SNRs. Of these four, three (included in the 22
above) meet the criterion. In all, 22 of the 51 nebular objects meet the
[SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains
undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc
RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves
We obtain explicit realizations of holographic renormalization group (RG)
flows from M-theory, from E^{2,1} \times Spin(7) at UV to AdS_4 \times
\tilde{S^7} (squashed S^7) at IR, from E^{2,1} \times CY4 at UV to AdS_4 \times
Q^{1,1,1} at IR, and from E^{2,1} \times HK (hyperKahler) at UV to AdS_4 \times
N^{0,1,0} at IR. The dual type IIA string theory configurations correspond to
D2-D6 brane systems where D6 branes wrap supersymmetric four-cycles. We also
study the Penrose limits and obtain the pp-wave backgrounds for the above
configurations. Besides, we study some examples of non-supersymmetric and
supersymmetric flows in five-dimensional gauge theories.Comment: 42 pages, 6 eps figures, typos and misprints correcte
Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory
We demonstrate the existence of the nilpotent and absolutely anticommuting
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the
four (3 + 1)-dimensional (4D) topologically massive Abelian U(1) gauge theory
that is described by the coupled Lagrangian densities (which incorporate the
celebrated (B \wedge F) term). The absolute anticommutativity of the (anti-)
BRST symmetry transformations is ensured by the existence of a Curci-Ferrari
type restriction that emerges from the superfield formalism as well as from the
equations of motion that are derived from the above coupled Lagrangian
densities. We show the invariance of the action from the point of view of the
symmetry considerations as well as superfield formulation. We discuss,
furthermore, the topological term within the framework of superfield formalism
and provide the geometrical meaning of its invariance under the (anti-) BRST
symmetry transformations.Comment: LaTeX file, 22 pages, journal versio
A New Strategy of Quantum-State Estimation for Achieving the Cramer-Rao Bound
We experimentally analyzed the statistical errors in quantum-state estimation
and examined whether their lower bound, which is derived from the Cramer-Rao
inequality, can be truly attained or not. In the experiments, polarization
states of bi-photons produced via spontaneous parametric down-conversion were
estimated employing tomographic measurements. Using a new estimation strategy
based on Akaike's information criterion, we demonstrated that the errors
actually approach the lower bound, while they fail to approach it using the
conventional estimation strategy.Comment: 4 pages, 2 figure
Pre - Inflationary Clues from String Theory ?
"Brane supersymmetry breaking" occurs in String Theory when the only
available combinations of D-branes and orientifolds are not mutually BPS and
yet do not introduce tree-level tachyon instabilities. It is characterized by
the emergence of a steep exponential potential, and thus by the absence of
maximally symmetric vacua. The corresponding low-energy supergravity admits
intriguing spatially-flat cosmological solutions where a scalar field is forced
to climb up toward the steep potential after an initial singularity, and
additional milder terms can inject an inflationary phase during the ensuing
descent. We show that, in the resulting power spectra of scalar perturbations,
an infrared suppression is typically followed by a pre-inflationary peak that
reflects the end of the climbing phase and can lie well apart from the
approximately scale invariant profile. A first look at WMAP9 raw data shows
that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly
compatible with an almost scale invariant behavior, they display nonetheless an
eye-catching preference for this type of setting within a perturbative string
regime.Comment: 34 pages, LaTeX, 16 eps figures. Relative displacement in fig. 14 and
some typos corrected, references and acknowledgments updated. To appear in
JCA
Nucleotide variation, haplotype structure, and association with end-stage renal disease of the human interleukin-1 gene cluster
A dense gene-based SNP map was constructed across a 360-kb region containing the interleukin-1 gene cluster (IL1A, IL1B, and IL1RN), focusing on IL1RN. In total, 95 polymorphisms were confirmed or identified primarily by direct sequencing. Polymorphisms were precisely mapped to completed BAC and genomic sequences spanning this region. The polymorphisms were typed in 443 case-control subjects from Caucasian and African American groups. Consecutive pair-wise marker linkage disequilibrium was not strictly correlated with distance and ranged from D′ = 0.0079 to 1.000 and D′ = 0.0521 to 1.0000 in Caucasians and African Americans, respectively. Single markers and haplotypes in IL1 cluster genes were evaluated for association with end-stage renal disease (ESRD). Eleven SNPs show some evidence of association with ESRD, with the strongest associations in two IL1A variants, one SNP, rs1516792-3, in intron 5 (p = 0.0015) and a 4-bp insertion/deletion within the 3′UTR, rs16347-2 (p = 0.0024), among African Americans with non-T2DM-associated ESRD
Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion
We present theoretical and experimental study of preparing maximally
entangled two-photon polarization states, or Bell states, using femtosecond
pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how
the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be
removed by using an interferometric technique without spectral and amplitude
post-selection. We then analyze the recently introduced Bell state preparation
scheme using type-I SPDC. Theoretically, both methods offer the same results,
however, type-I SPDC provides experimentally superior methods of preparing Bell
states in femtosecond pulse pumped SPDC. Such a pulsed source of highly
entangled photon pairs is useful in quantum communications, quantum
cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR
- …