24 research outputs found

    Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign ? Part I: Model description and application to the La Merced site

    No full text
    International audienceThe equilibrium inorganic aerosol model ISORROPIA was embedded in a Markov Chain Monte Carlo algorithm to develop a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. The method directly incorporates measurement uncertainty, prior knowledge, and provides a formal framework to combine measurements of different quality. The method was applied to particle- and gas-phase precursor observations taken at La Merced during the Mexico City Metropolitan Area (MCMA) 2003 Field Campaign and served to discriminate between diverging gas-phase observations of ammonia and predict gas-phase concentrations of hydrochloric acid. The model reproduced observations of particle-phase ammonium, nitrate, and sulfate well. The most likely concentrations of ammonia were found to vary between 4 and 26 ppbv, while the range for nitric acid was 0.1 to 55 ppbv. During periods where the aerosol chloride observations were consistently above the detection limit, the model was able to reproduce the aerosol chloride observations well and predicted the most likely gas-phase hydrochloric acid concentration varied between 0.4 and 5 ppbv. Despite the high ammonia concentrations observed and predicted by the model, when the aerosols were assumed to be in the efflorescence branch they are predicted to be acidic (pH~3)

    Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign ? Part II: Model application to the CENICA, Pedregal and Santa Ana sites

    No full text
    International audienceA Markov Chain Monte Carlo model for integrating the observations of inorganic species with a thermodynamic equilibrium model was presented in Part I of this series. Using observations taken at three ground sites, i.e. a residential, industrial and rural site, during the MCMA-2003 campaign in Mexico City, the model is used to analyze the inorganic particle and ammonia data and to predict gas phase concentrations of nitric and hydrochloric acid. In general, the model is able to accurately predict the observed inorganic particle concentrations at all three sites. The agreement between the predicted and observed gas phase ammonia concentration is excellent. The NOz concentration calculated from the NOy, NO and NO2 observations is of limited use in constraining the gas phase nitric acid concentration given the large uncertainties in this measure of nitric acid and additional reactive nitrogen species. Focusing on the acidic period of 9?11 April identified by Salcedo et al. (2006), the model accurately predicts the particle phase observations during this period with the exception of the nitrate predictions after 10:00 a.m. (Central Daylight Time, CDT) on 9 April, where the model underpredicts the observations by, on average, 20%. This period had a low planetary boundary layer, very high particle concentrations, and higher than expected nitrogen dioxide concentrations. For periods when the particle chloride observations are consistently above the detection limit, the model is able to both accurately predict the particle chloride mass concentrations and provide well-constrained HCl (g) concentrations. The availability of gas-phase ammonia observations helps constrain the predicted HCl (g) concentrations. When the particles are aqueous, the most likely concentrations of HCl (g) are in the sub-ppbv range. The most likely predicted concentration of HCl (g) was found to reach concentrations of order 10 ppbv if the particles are dry. Finally, the atmospheric relevance of HCl (g) is discussed in terms of its indicator properties for the possible influence of chlorine-mediated photochemistry in Mexico City

    Rituximab as maintenance treatment for systemic Lupus Erythematosus: a multicentre observational study of 147 patients

    Get PDF
    INTRODUCTION: The efficacy of rituximab (RTX) in Systemic Lupus Erythematosus (SLE) is debated. We describe the outcomes of a European SLE cohort treated with RTX, with emphasis on its role as a maintenance agent. METHODS: All patients with SLE receiving RTX as induction across four centres were included, follow-up post RTX was collected including the subgroup treated with RTX as maintenance treatment (RMT). Disease flares during the follow-up were defined as an increase in disease activity and immunosuppressive drugs. RESULTS: Of 147 patients, at 6 months 27% experienced treatment failure (TF), in a multivariate analysis, a low number of previous immunosuppressive therapies (p=0.034) and low C4 levels (p=0.008) reduced the risk of TF. Eighty patients received RMT over a median of 24.5 months during which 85 relapses, mainly musculoskeletal, were recorded (1.06 per patient), at the last RTX course, 84% of the patients were in remission. 28/80 (35%) patients never flared during the RMT with low damage accrual, active articular disease at the time of the first RTX course was associated with risk of flare during RMT (p=0.010). After RMT, relapse free survival was similar to patients receiving a single-RTX course (p=0.72). CONCLUSIONS: RMT is a potential treatment option in difficult to treat patients. Relapses occur during RMT and are more likely in those with active articular disease at the time of the first RTX. Relapse risk after RMT remains high and apparently comparable to the one seen after a single-RTX course

    Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX)

    Get PDF
    Acid-catalyzed reactions between gas- and particle-phase constituents are critical to atmospheric secondary organic aerosol (SOA) formation. The aerosol-phase state is thought to influence the reactive uptake of gas-phase precursors to aerosol particles by altering diffusion rates within particles. However, few experimental studies have explored the precise role of the aerosol-phase state on reactive uptake processes. This laboratory study systematically examines the reactive uptake coefficient (γ) of trans-β-isoprene epoxydiol (trans-β-IEPOX), the predominant IEPOX isomer, on acidic sulfate particles coated with SOA derived from α-pinene ozonolysis. γIEPOX is obtained for core-shell particles, the morphology of which was confirmed by microscopy, as a function of SOA coating thickness and relative humidity. γIEPOX is reduced, in some cases by half of the original value, when SOA coatings are present prior to uptake, especially when coating thicknesses are > 15 nm. The diurnal trend of IEPOX lost to acid-catalyzed reactive uptake yielding SOA compared with other known atmospheric sinks (gas-phase oxidation or deposition) is derived by modeling the experimental coating effect with field data from the southeastern United States. IEPOX-derived SOA is estimated to be reduced by 16-27% due to preexisting organic coatings during the afternoon (12:00 to 7:00 p.m., local time), corresponding to the period with the highest level of production

    Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013

    Get PDF
    We present results of the first intercomparison of real-time instruments for gas/particle partitioning of organic species. Four recently-developed instruments that directly measure gas/particle partitioning in near-real time were deployed in Centreville, Alabama during the Southern Oxidant Aerosol Study (SOAS) in 2013. Two instruments were filter inlet for gases and aerosols high-resolution chemical ionization mass spectrometers (FIGAERO-HRToF-CIMS) with acetate (A-CIMS) and iodide (I-CIMS) ionization sources, respectively; the third was a semi-volatile thermal desorption aerosol GC-MS (SV-TAG); and the fourth was a high-resolution thermal desorption proton-transfer reaction mass spectrometer (HR-TD-PTRMS). Signals from these instruments corresponding to several organic acids were chosen for comparison. The campaign average partitioning fractions show good correlation. A similar level of agreement with partitioning theory is observed. Thus the intercomparison exercise shows promise for these new measurements, as well as some confidence on the measurement of low versus high particle-phase fractions. However, detailed comparison show several systematic differences that lie beyond estimated measurement errors. These differences may be due to at least eight different effects: (1) underestimation of uncertainties under low signal-to-noise; (2) inlet and/or instrument adsorption/desorption of gases; (3) differences in particle size ranges sampled; (4) differences in the methods used to quantify instrument backgrounds; (5) errors in high-resolution fitting of overlapping ion groups; (6) differences in the species included in each measurement due to different instrument sensitivities; and differences in (7) negative or (8) positive thermal decomposition (or ion fragmentation) artifacts. The available data are insufficient to conclusively identify the reasons, but evidence from these instruments and available data from an ion mobility spectrometer shows the particular importance of effects 6–8 in several cases. This comparison highlights the difficulty of this measurement and its interpretation in a complex ambient environment, and the need for further improvements in measurement methodologies, including isomer separation, and detailed study of the possible factors leading to the observed differences. Further intercomparisons under controlled laboratory and field conditions are strongly recommended

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait

    A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with GC/MS-FID

    Get PDF
    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to understand the formation process, composition, and properties of aerosols and facilitates source identification and relative contributions from different types of sources to ambient aerosols in the atmosphere. However, current analytical methods are far from full speciation of organic aerosols and often require sampling times of up to one week. Offline methods are also subjected to artifacts during aerosol collection and storage.In the present work a new technique for quasi on-line compound specific measurements of organic aerosol particles was developed. The Aerosol Collection Module (ACM) focuses particles into a beam which is directed to a cooled sampling surface. The sampling takes place in a high vacuum environment where the gas phase from the sample volume is removed. After collection is completed volatile and semi-volatile compounds are evaporated from the collection surface through heating and transferred to a detector.For laboratory characterization the ACM was interfaced with a Gas Chromatograph Mass Spectrometer, Flame Ionization Detector system (GC/MS-FID), abbreviated as ACM GC-MS. The particle collection efficiency, gas phase transfer efficiency, and linearity of the ACM GC-MS were determined using laboratory generated octadecane aerosols.The ACM GC-MS is linear over the investigated mass range of 10 to 100 ng and a recovery rate of 100% was found for octadecane particles. The ACM GC-MS was applied to investigate secondary organic aerosol (SOA) formed from beta-pinene oxidation. Nopinone, myrtanal, myrtenol, 1-hydroxynopinone, 3-oxonopinone, 3,7-dihydroxynopinone, and bicyclo[ 3,1,1]hept-3-ene-2-one were found as products in the SOA. The ACM GC-MS results are compared to quartz filter samples taken in parallel to the ACM GC-MS measurements. First measurements of ambient atmospheric aerosols are presented

    A new aerosol collector for on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM)

    Get PDF
    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to understand the formation process, composition, and properties of aerosols and facilitates source identification and relative contributions from different types of sources to ambient aerosols in the atmosphere. However, current analytical methods are far from full speciation of organic aerosols and often require sampling times of up to one week. Offline methods are also subjected to artifacts during aerosol collection and storage. In the present work a new technique for quasi on-line compound specific measurements of organic aerosol particles was developed. The Aerosol Collection Module (ACM) focuses particles into a beam which is directed to a cooled sampling surface. The sampling takes place in a high vacuum environment where the gas phase from the sample volume is removed. After collection is completed volatile and semi-volatile compounds are evaporated from the collection surface through heating and transferred to a detector. For laboratory characterization the ACM was interfaced with a Gas Chromatograph Mass Spectrometer, Flame Ionization Detector system (GC/MS-FID), abbreviated as ACM GC-MS. The particle collection efficiency, gas phase transfer efficiency, and linearity of the ACM GC-MS were determined using laboratory generated octadecane aerosols. The ACM GC-MS is linear over the investigated mass range of 10 to 100 ng and a recovery rate of 100% was found for octadecane particles. The ACM GC-MS was applied to investigate secondary organic aerosol (SOA) formed from β-pinene oxidation. Nopinone, myrtanal, myrtenol, 1-hydroxynopinone, 3-oxonopinone, 3,7-dihydroxynopinone, and bicyclo[3,1,1]hept-3-ene-2-one were found as products in the SOA. The ACM GC-MS results are compared to quartz filter samples taken in parallel to the ACM GC-MS measurements. First measurements of ambient atmospheric aerosols are presented.United States. Environmental Protection Agency (grant number RD-83107701-0)United States. Dept. of Energy (grant number DE-FG02-05ER84269
    corecore