14 research outputs found
The Effect of Line Averaging on Scalar Flux Measurements with a Sonic Anemometer near the Surface
Low- to mid-tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian Taiga
We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric a cid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site
Sensitivity of ADOM dry deposition velocities to input parameters: A comparison with measurements for SO 2
What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brazil flux network
We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5° N–5° S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three non-water limited equatorial forest sites peak in the dry season, in correlation with high dry season light levels. The higher photosynthetic capacity that follows persists into the wet season, driving high GEP that is out of phase with sunlight, explaining the negative observed relationship with sunlight. Overall, these patterns suggest that at sites where water is not limiting, light interacts with adaptive mechanisms to determine photosynthetic capacity indirectly through leaf flush and litterfall seasonality. These mechanisms are poorly represented in ecosystem models, and represent an important challenge to efforts to predict tropical forest responses to climatic variations
What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brazil flux network
We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5° N–5° S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three non-water limited equatorial forest sites peak in the dry season, in correlation with high dry season light levels. The higher photosynthetic capacity that follows persists into the wet season, driving high GEP that is out of phase with sunlight, explaining the negative observed relationship with sunlight. Overall, these patterns suggest that at sites where water is not limiting, light interacts with adaptive mechanisms to determine photosynthetic capacity indirectly through leaf flush and litterfall seasonality. These mechanisms are poorly represented in ecosystem models, and represent an important challenge to efforts to predict tropical forest responses to climatic variations
Assessing precipitation concentration in the Amazon basin from different satellite‐based data sets
Daily precipitation concentration in the Amazon basin (AB) is characterized using concentration index (CI), which is computed from HYBAM Observed Precipitation (HOP) data set, for 1980–2009 period. The ability of four satellite precipitation data sets (TMPA V7, TMPA RT, CMORPH and PERSIANN) to estimate CI is evaluated for 2001–2009 period. Our findings provide new information about the spatial irregularity of daily rainfall distribution over the AB. In addition, the spatial distribution of CI values is not completely explained by rainfall seasonality, which highlights the influence of different weather systems over the AB. The results of rainfall concentration indicate that the distribution of daily rainfall is more regular over northwest (northern Peru) and central Andes. Conversely, Roraima region and a large area of Bolivian Amazon register the highest irregularity in the daily rainfall. Bolivian Amazon also represents regions where the large percentage of total rainfall arises from extreme events (>90th percentile). Heavy rainfall episodes over Roraima region are induced by humidity influx come from Caribbean region, while heavy rainfall events over Bolivian Amazon and Andes region are induced by the northwards propagation of cold and dry air along both sides of Andes Mountains, but only propagate in all tropospheric levels for the Andes. The results also show that PERSIANN and TMPA7 data sets better estimates the daily precipitation concentration for whole AB, but with a relative error 8%. CI estimated from satellites does not agree well with HOP over the Andes and northern Peruvian Amazon. On the other hand, the temporal variability of CI can partly be detected using CMORPH and TMPAV7 data sets over the Peruvian Andes, and central and southern Brazil. Errors in CI estimating might be related to inaccurate estimation of daily rainfall. Finally, we conclude that satellite‐based precipitation data sets are useful for analysing rainfall concentration in some regions of AB
