49 research outputs found

    Effect on Structural, Micro Structural and Optical Properties due to Change in Composition of Zn and Sn in ZnO:SnO2 Nanocomposite Thin Films

    Get PDF
    Nanocomposite ZnO : SnO2 and pervoskite ZnSnO3 nanoparticles were synthesized with different volume ratios [40 : 60 (wt %), 50 : 50 (wt %), 60 : 40 (wt %), 70 : 30 (wt %) and 30 : 70 (wt %) respectively] have been deposited by spray pyrolysis technique on glass substrate using an aqueous solution of Zinc chloride (0.1 M) and Stannic chloride (0.1 M) at a substrate temperature 400 5 C. The structural, surface morphological and optical characterizations of the as-prepared samples were carried out using XRD, SEM, TEM and UV-VIS spectrophotometer, respectively. The XRD result showed nanostructured pervoskite thin films of ZnSnO3 and composite of ZnO : SnO2. The volume ratio of zinc chloride and stannic chloride when varied, the particle size was found increasing where as particle shape changed from circular to hexagonal. The X-ray diffraction spectroscopy results indicated that all the samples had the good crystallinity. The ultraviolet-visible absorption spectra showed increased band gap for the samples as compare to the reported values. With the transmission electron microscope, we got some morphology information and evidence to support the UV and XRD analysis results. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3102

    Filtering out the cosmological constant in the Palatini formalism of modified gravity

    Full text link
    According to theoretical physics the cosmological constant (CC) is expected to be much larger in magnitude than other energy densities in the universe, which is in stark contrast to the observed Big Bang evolution. We address this old CC problem not by introducing an extremely fine-tuned counterterm, but in the context of modified gravity in the Palatini formalism. In our model the large CC term is filtered out, and it does not prevent a standard cosmological evolution. We discuss the filter effect in the epochs of radiation and matter domination as well as in the asymptotic de Sitter future. The final expansion rate can be much lower than inferred from the large CC without using a fine-tuned counterterm. Finally, we show that the CC filter works also in the Kottler (Schwarzschild-de Sitter) metric describing a black hole environment with a CC compatible to the future de Sitter cosmos.Comment: 22 pages, 1 figure, discussion extended, references added, accepted by Gen.Rel.Gra

    Recognize fish as food in policy discourse and development funding

    Get PDF
    The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0�59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3�5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization�s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99 of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40 and wasting to less than 5 by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications. © 2020, The Author(s)

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts. Chiu et al. present a pan-cancer analysis of lncRNA regulatory interactions. They suggest that the dysregulation of hundreds of lncRNAs target and alter the expression of cancer genes and pathways in each tumor context. This implies that hundreds of lncRNAs can alter tumor phenotypes in each tumor context

    Non-similar solutions of mixed convection flow from an exponentially stretching surface

    No full text
    In this paper we focus on to obtaining non-similar solutions for steady two dimensional double diffusive mixed convection boundary layer flows over an impermeable exponentially stretching sheet in an exponentially moving free stream under the influence of chemically reactive species. The nonlinear partial differential equations governing the flow, temperature and species concentration fields are presented in non-dimensional form with the help of suitable non-similar transformations. The resulting final non-dimensional set of coupled nonlinear partial differential equations is solved by using an implicit finite difference scheme in combination with the Newton’s linearization technique. The effects of various non-dimensional physical parameters on velocity, temperature and species concentration fields are discussed. The results reveal that the streamwise coordinate ξ remarkably influences the flow, thermal and solutal concentration fields which display the existence of non-similar solutions

    Biosynthesis, Characterization, Evaluation, and Shelf-Life Study of Silver Nanoparticles against Cotton Bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera)

    No full text
    Nanoparticles provide a promising and alternative platform of eco-friendly technologies that encompasses better cost-resilient remedies against one of the most economically harnessing insect pests of cotton. The main goal of this research was to provide a better management strategy through biologically synthesizing (sunlight exposure method) green nanoparticles from leaf extracts of Azadirachta indica and Pongamia pinnata and proving their bioefficacy on H. armigera (2nd instar). Characterization of bio-synthesized silver nanoparticles was carried out using UV-Visible spectroscopy for confirming the formation of nanoparticles, a Particle Size Analyzer (PSA) for determining the size/distribution of particles, and a Scanning Electron Microscope (SEM) for analyzing the surface topology of nanoparticles. The results obtained from PSA analysis showed that A. indica and P. pinnata-based silver nanoparticles had an average diameter of 61.70 nm and 68.80, respectively. Topographical images obtained from SEM proved that most of the green synthesized silver nanoparticles were spherical in shape. A. indica-based silver nanoparticles were found to be comparatively more efficient and have higher insecticidal activity compared to P. pinnata-based nanoparticles. A. indica-based AgNPs recorded larval mortality of 60.00 to 93.33 percent at the concentrations of 500 to 2000 ppm, followed by P. pinnata-based nanoparticles, with 60.00 to 90.00 percent larval mortality. Shelf-life studies revealed that A. indica-based AgNPs had the maximum negative zeta potential of −58.96 mV and could be stored for three months without losing bioefficacy and up to six months with negligible reduction in bioefficacy. Symptoms caused by silver nanoparticles were leakage of body fluids, sluggishness, inactiveness, brittleness, etc

    Seroprevalence of Contagious Caprine Pleuropneumonia in goats in Nagpur district of Vidarbha region

    No full text
    A total of 294 serum samples were collected from apparently healthy goats of different age and sex from 13 tehsils of Nagpur district. All the samples were screened for Contagious Caprine Pleuro Pneumonia antibodies by slide agglutination test using colored CCPP antigen. Out of 294 serum samples screened 99 were found to be positive indicating overall seroprevalence of 33.67 per cent. The higher prevalence was observed in Saoner tehsil (44.44%) followed by Bhivapur (41.46%), Kalmeshwar (40.00 %) and Kamptee (38.46%). The higher incidence in these tehsils could be attributed to the presence of endemic foci in this area. Slide agglutination test for CCPP detection using colored antigen was found to be quick, simple, low cost with ease of application in the field without the need of any specialized training and equipments. [Veterinary World 2008; 1(9.000): 270-271
    corecore