34 research outputs found

    Cosmology with clusters of galaxies

    Get PDF
    In this Chapter I review the role that galaxy clusters play as tools to constrain cosmological parameters. I will concentrate mostly on the application of the mass function of galaxy clusters, while other methods, such as that based on the baryon fraction, are covered by other Chapters of the book. Since most of the cosmological applications of galaxy clusters rely on precise measurements of their masses, a substantial part of my Lectures concentrates on the different methods that have been applied so far to weight galaxy clusters. I provide in Section 2 a short introduction to the basics of cosmic structure formation. In Section 3 I describe the Press--Schechter (PS) formalism to derive the cosmological mass function, then discussing extensions of the PS approach and the most recent calibrations from N--body simulations. In Section 4 I review the methods to build samples of galaxy clusters at different wavelengths. Section 5 is devoted to the discussion of different methods to derive cluster masses. In Section 6 I describe the cosmological constraints, which have been obtained so far by tracing the cluster mass function with a variety of methods. Finally, I describe in Section 7 the future perspectives for cosmology with galaxy clusters and the challenges for clusters to keep playing an important role in the era of precision cosmology.Comment: 49 pages, 19 figures, Lectures for 2005 Guillermo Haro Summer School on Clusters, to appear in "Lecture notes in Physics" (Springer

    The sedimentary record of Quaternary glacial to interglacial sea-level change on a subtropical carbonate ramp: Southwest Shelf of Australia

    Get PDF
    In the last decades, the understanding of temperate carbonate systems has improved considerably, but their development over glacial–interglacial timescales is still understudied in comparison to their tropical counterparts. A key question is how do temperate carbonate platforms respond to high-amplitude, glacial–interglacial sea-level changes? Integrated Ocean Drilling Program Site U1460 was drilled at the uppermost slope of the Southwest Shelf of Australia at the transition between the subtropical Carnarvon Ramp and the warm–temperate Rottnest Shelf. The origin and composition of the sediments in the upper 25 m below seafloor at Site U1460 were investigated using X-ray diffraction, scanning electron, and light microscopy. The Middle Pleistocene to Holocene sequence at Integrated Ocean Drilling Program Site U1460 contains a record of sea-level controlled sedimentary cycles. Carbonate sediments deposited during interglacial sea-level highstands (Marine Isotope Stages 1, 5, most of 7, 9 and 11) are mainly fine-grained (<63 ”m) and dominated by low-Mg calcite from pelagic bioclasts such as planktic foraminifera. The glacial lowstand intervals (Marine Isotope Stages 2 to 4, 6, 8, 7d, 10 and 12), instead are coarser-grained and relatively rich in aragonite and high-Mg calcite from neritic bioclasts, such as bryozoans. These changes in texture, mineralogy and composition are best explained by the deposition of neritic bioclasts closer to the shelf edge during glacial sea-level lowstands. During early transgression, reworking of bioclast-rich coastal dune deposits likely leads to transport and redeposition of neritic clasts on the upper slope. In contrast, dominantly pelagic sediments characterize deposition at the platform edge during interglacial highstands. These results highlight regional differences in the response of temperate carbonate systems to sea-level change: A previously published model developed for early Pleistocene temperate carbonates from the Great Australian Bight indicates that shelfal material was exported to the upper slope during sea-level highstands. It is argued that this difference is related to the change in duration and amplitude of glacial–interglacial sea-level cycles before and after the Mid-Pleistocene transition

    Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene)

    No full text
    Middle Pleistocene to Holocene sediment variations observed in a 26 metre long core taken during a cruise of the RV Marion Dufresne are presented. Core MD992202 was retrieved from the northern slope of Little Bahama Bank and provides an excellent example for sedimentation processes in a mid-slope depositional environment. The sediment composition indicates sea-level related deposition processes for the past 375 000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine-grained particles of shallow-water and pelagic origin) with moderate variations in carbonate content, carbonate mineralogy and grain-size; and (ii) coarser intervals with cemented debris consisting of massive, poorly sorted, mud-supported or clast-supported deposits with an increased high-magnesium calcite content. During interglacial stages (marine isotope stages 1, 5, 7, 9 and 11) periplatform oozes (i) are characterized by higher aragonite contents, finer grain-size and higher organic contents, whereas during glacial stages (marine isotope stages 2 to 4, 6, 8 and 10), increased low-magnesium and high-magnesium calcite values, coarser grain-size and lower organic contents are recorded. These glacial to interglacial differences in mineralogy, grain-size distribution and organic content clearly show the impact of climatically controlled sea-level fluctuations on the sedimentation patterns of the northern slope of Little Bahama Bank. The coarser deposits (ii) occur mainly at the transitions from glacial to interglacial and interglacial to glacial stages, and are interpreted as redeposition events, indicating a direct link between sediment properties (changes in mineralogy, grain-size distribution, variations in organic contents) and sea-level fluctuations. Changes in hydrostatic pressure and the wave base position during sea-level changes are proposed to have triggered these large-scale sediment redepositions
    corecore