1,633 research outputs found
Economic evaluation of a community based exercise programme to prevent falls
OBJECTIVE: To assess the incremental costs and cost effectiveness of implementing a home based muscle strengthening and balance retraining programme that reduced falls and injuries in older women. DESIGN: An economic evaluation carried out within a randomised controlled trial with two years of follow up. Participants were individually prescribed an exercise programme (exercise group, n=116) or received usual care and social visits (control group, n=117). SETTING: 17 general practices in Dunedin, New Zealand. PARTICIPANTS: Women aged 80 years and older living in the community and invited by their general practitioner to take part. MAIN OUTCOME MEASURES: Number of falls and injuries related to falls, costs of implementing the intervention, healthcare service costs resulting from falls and total healthcare service costs during the trial. Cost effectiveness was measured as the incremental cost of implementing the exercise programme per fall event prevented. MAIN RESULTS: 27% of total hospital costs during the trial were related to falls. However, there were no significant differences in health service costs between the two groups. Implementing the exercise programme for one and two years respectively cost 265 (1995 New Zealand dollars) per fall prevented, and 426 per fall resulting in a moderate or serious injury prevented. CONCLUSIONS: The costs resulting from falls make up a substantial proportion of the hospital costs for older people. Despite a reduction in falls as a result of this home exercise programme there was no significant reduction in healthcare costs. However, the results reported will provide information on the cost effectiveness of the programme for those making decisions on falls prevention strategies
Complementarity and the uncertainty relations
We formulate a general complementarity relation starting from any Hermitian
operator with discrete non-degenerate eigenvalues. We then elucidate the
relationship between quantum complementarity and the Heisenberg-Robertson's
uncertainty relation. We show that they are intimately connected. Finally we
exemplify the general theory with some specific suggested experiments.Comment: 9 pages, 4 figures, REVTeX, uses epsf.sty and multicol.st
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
Alpha scattering and capture reactions in the A = 7 system at low energies
Differential cross sections for He- scattering were measured in
the energy range up to 3 MeV. These data together with other available
experimental results for He and H scattering were
analyzed in the framework of the optical model using double-folded potentials.
The optical potentials obtained were used to calculate the astrophysical
S-factors of the capture reactions HeBe and
HLi, and the branching ratios for the transitions into
the two final Be and Li bound states, respectively. For
HeBe excellent agreement between calculated and
experimental data is obtained. For HLi a value
has been found which is a factor of about 1.5 larger than the adopted value.
For both capture reactions a similar branching ratio of has been obtained.Comment: submitted to Phys.Rev.C, 34 pages, figures available from one of the
authors, LaTeX with RevTeX, IK-TUW-Preprint 930540
The Local Bubble and Interstellar Material Near the Sun
The properties of interstellar matter (ISM) at the Sun are regulated by our
location with respect to the Local Bubble (LB) void in the ISM. The LB is
bounded by associations of massive stars and fossil supernovae that have
disrupted natal ISM and driven intermediate velocity ISM into the LB interior
void. The Sun is located in such a driven ISM parcel. The Local Fluff has a
bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center
of the gas and dust ring formed by the Loop I supernova remnant interaction
with the LB. When the ram pressure of the LIC is included in the total LIC
pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC
appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring
Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews
(in press
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Tensor-scalar gravity and binary-pulsar experiments
Some recently discovered nonperturbative strong-field effects in
tensor-scalar theories of gravitation are interpreted as a scalar analog of
ferromagnetism: "spontaneous scalarization". This phenomenon leads to very
significant deviations from general relativity in conditions involving strong
gravitational fields, notably binary-pulsar experiments. Contrary to
solar-system experiments, these deviations do not necessarily vanish when the
weak-field scalar coupling tends to zero. We compute the scalar "form factors"
measuring these deviations, and notably a parameter entering the pulsar timing
observable gamma through scalar-field-induced variations of the inertia moment
of the pulsar. An exploratory investigation of the confrontation between
tensor-scalar theories and binary-pulsar experiments shows that nonperturbative
scalar field effects are already very tightly constrained by published data on
three binary-pulsar systems. We contrast the probing power of pulsar
experiments with that of solar-system ones by plotting the regions they exclude
in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure
Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia.
Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex
Measurement of the Michel Parameters in Leptonic Tau Decays
The Michel parameters of the leptonic tau decays are measured using the OPAL
detector at LEP. The Michel parameters are extracted from the energy spectra of
the charged decay leptons and from their energy-energy correlations. A new
method involving a global likelihood fit of Monte Carlo generated events with
complete detector simulation and background treatment has been applied to the
data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding
to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu
universality is assumed and inferring the tau polarization from neutral current
data, the measured Michel parameters are extracted. Limits on non-standard
coupling constants and on the masses of new gauge bosons are obtained. The
results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European
Physical Journal
A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where
Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL
detector at LEP. Lambda_b are selected by the presence of energetic Lambda
particles in bottom events tagged by the presence of displaced secondary
vertices. A fit to the momenta of the Lambda particles separates signal from B
meson and fragmentation backgrounds. The measured product branching ratio is
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))%
Combined with a previous OPAL measurement, one obtains
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European
Physical Journal
- …
