13 research outputs found

    Spitzer Parallax Of Ogle-2015-blg-0966: A Cold Neptune In The Galactic Disk

    Get PDF
    We report the detection of a cold Neptune mplanet = 21 ± 2 M? orbiting a 0.38 M? M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge

    The Spitzer Microlensing Program As A Probe For Globular Cluster Planets: Analysis Of Ogle-2015-BLG-0448

    Get PDF
    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 (μcl(N,E)=(+0.36±0.10,+1.42±0.10)  mas  yr1{{\boldsymbol{\mu }}}_{\mathrm{cl}}(N,E)=(+0.36\pm 0.10,+1.42\pm 0.10)\;{\rm{mas}}\;{{\rm{yr}}}^{-1}) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer

    Randomized placebo controlled trial evaluating the safety and efficacy of single low-dose intracoronary insulin-like growth factor following percutaneous coronary intervention in acute myocardial infarction (RESUS-AMI)

    No full text
    Item does not contain fulltextBACKGROUND: Residual and significant postinfarction left ventricular (LV) dysfunction, despite technically successful percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI), remains an important clinical issue. In preclinical models, low-dose insulin-like growth factor 1 (IGF1) has potent cytoprotective and positive cardiac remodeling effects. We studied the safety and efficacy of immediate post-PCI low-dose intracoronary IGF1 infusion in STEMI patients. METHODS: Using a double-blind, placebo-controlled, multidose study design, we randomized 47 STEMI patients with significantly reduced (</=40%) LV ejection fraction (LVEF) after successful PCI to single intracoronary infusion of placebo (n = 15), 1.5 ng IGF1 (n = 16), or 15 ng IGF1 (n = 16). All received optimal medical therapy. Safety end points were freedom from hypoglycemia, hypotension, or significant arrhythmias within 1 hour of therapy. The primary efficacy end point was LVEF, and secondary end points were LV volumes, mass, stroke volume, and infarct size at 2-month follow-up, all assessed by magnetic resonance imaging. Treatment effects were estimated by analysis of covariance adjusted for baseline (24 hours) outcome. RESULTS: No significant differences in safety end points occurred between treatment groups out to 30 days (chi(2) test, P value = .77). There were no statistically significant differences in baseline (24 hours post STEMI) clinical characteristics or LVEF among groups. LVEF at 2 months, compared to baseline, increased in all groups, with no statistically significant differences related to treatment assignment. However, compared with placebo or 1.5 ng IGF1, treatment with 15 ng IGF1 was associated with a significant improvement in indexed LV end-diastolic volume (P = .018), LV mass (P = .004), and stroke volume (P = .016). Late gadolinium enhancement (+/-SD) at 2 months was lower in 15 ng IGF1 (34.5 +/- 29.6 g) compared to placebo (49.1 +/- 19.3 g) or 1.5 ng IGF1 (47.4 +/- 22.4 g) treated patients, although the result was not statistically significant (P = .095). CONCLUSIONS: In this pilot trial, low-dose IGF1, given after optimal mechanical reperfusion in STEMI, is safe but does not improve LVEF. However, there is a signal for a dose-dependent benefit on post-MI remodeling that may warrant further study

    New Antiplatelet Strategies in the Adjunctive Treatment of Acute Myocardial Infarction

    No full text

    An Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing

    Get PDF
    We report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (tE ≃ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462 (hereafter designated as MOA-11-191/OGLE-11-462), in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of 6 yr, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry of MOA-11-191/OGLE-11-462 shows a parallactic signature of the effect of Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 ± 1.3 M⊙ and a distance of 1.58 ± 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic disk stars at similar distances by an amount corresponding to a transverse space velocity of ∼45 km s−1, suggesting that the BH received a "natal kick" from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial velocity measurements of Galactic X-ray binaries and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first for an isolated stellar-mass BH using any technique
    corecore