319 research outputs found
Quasi Stable Black Holes at the Large Hadron Collider
We adress the production of black holes at LHC and their time evolution in
space times with compactified space like extra dimensions. It is shown that
black holes with life times of hundred fm/c can be produced at LHC. The
possibility of quasi-stable remnants is discussed.Comment: 4 pages, 3 figures, typos removed, omitted factors included, accepted
for publicatio
Learning Behavioural Context
The original publication is available at www.springerlink.co
Strengthening mechanisms in an Al-Fe-Cr-Ti nano-quasicrystalline alloy and composites
We report a study of the structure-processing-property relationships in a high strength AlFeCrTi nano-quasicrystalline alloy and composites containing 10 and 20Â vol% ductilising pure Al fibres. The superimposed contributions of several different strengthening mechanisms have been modelled analytically using data obtained from systematic characterisation of the monolithic alloy bar. An observed yield strength of 544Â MPa has been substantiated from a combination of solid solution strengthening, work hardening, precipitation hardening and Hall-Petch grain size dependent effects. These materials have been shown by other authors in previous published work to be highly sensitive to the size distribution of particles in the powder from which they are made, and the subsequent thermomechanical processing conditions. The processing condition employed in this study provided micron-sized grains with a strong [111] preferential orientation along the extrusion direction and a bimodal size distribution of the icosahedral nano-quasicrystalline precipitates. Both were deemed to be a significant contributor to the high yield strength observed. The addition of pure Al fibres was found to decrease the yield strength linearly with increasing Al content, and to augment the ductility of the composites.Industrial collaborator ALPOCO Ltd. (and more specifically Steve McArthur) provided the powders. Dr. Karen Kruska and Dr. Alan Xu assisted with sample preparation of FIB lift-out specimens of the atomised powder for TEM analysis. EPSRC Project EP/E040608/1 provided financial support. M. Galano thanks the RAEng for their support by means of a Research Fellowship. F. Audebert and M. Galano thank PICT-Oxford2010/2831. F. Audebert also thanks UBACyT20020130100663 and FONARSEC FS Nano 2010/11 for financial support.Peer Reviewe
Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state
We propose a scheme to implement a single-mode quantum filter, which
selectively eliminates the one-photon state in a quantum state
. The vacuum state and the two photon state are
transmitted without any change. This scheme requires single-photon sources,
linear optical elements and photon detectors. Furthermore we demonstrate, how
this filter can be used to realize a two-qubit projective measurement and to
generate multi-photon polarization entangled states.Comment: revision submitted to PR
Casimir Effect, Achucarro-Ortiz Black Hole and the Cosmological Constant
We treat the two-dimensional Achucarro-Ortiz black hole (also known as (1+1)
dilatonic black hole) as a Casimir-type system. The stress tensor of a massless
scalar field satisfying Dirichlet boundary conditions on two one-dimensional
"walls" ("Dirichlet walls") is explicitly calculated in three different vacua.
Without employing known regularization techniques, the expression in each
vacuum for the stress tensor is reached by using the Wald's axioms. Finally,
within this asymptotically non-flat gravitational background, it is shown that
the equilibrium of the configurations, obtained by setting Casimir force to
zero, is controlled by the cosmological constant.Comment: 20 pages, LaTeX, minor corrections, comments and clarifications
added, version to appear in Phys. Rev.
Sub-barrier capture with quantum diffusion approach: actinide-based reactions
With the quantum diffusion approach the behavior of capture cross sections
and mean-square angular momenta of captured systems are revealed in the
reactions with deformed nuclei at subbarrier energies. The calculated results
are in a good agreement with existing experimental data. With decreasing
bombarding energy under the barrier the external turning point of the
nucleusnucleus potential leaves the region of short-range nuclear interaction
and action of friction. Because of this change of the regime of interaction, an
unexpected enhancement of the capture cross section is expected at bombarding
energies far below the Coulomb barrier. This effect is shown its worth in the
dependence of mean-square angular momentum of captured system on the bombarding
energy. From the comparison of calculated and experimental capture cross
sections, the importance of quasifission near the entrance channel is shown for
the actinide-based reactions leading to superheavy nuclei.Comment: 11 pages, 16 figures, Regular Articl
Weak Localization Effect in Superconductors by Radiation Damage
Large reductions of the superconducting transition temperature and
the accompanying loss of the thermal electrical resistivity (electron-phonon
interaction) due to radiation damage have been observed for several A15
compounds, Chevrel phase and Ternary superconductors, and in
the high fluence regime. We examine these behaviors based on the recent theory
of weak localization effect in superconductors. We find a good fitting to the
experimental data. In particular, weak localization correction to the
phonon-mediated interaction is derived from the density correlation function.
It is shown that weak localization has a strong influence on both the
phonon-mediated interaction and the electron-phonon interaction, which leads to
the universal correlation of and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information,
Plesse see http://www.fen.bilkent.edu.tr/~yjki
Environmental Electrokinetics for a sustainable subsurface
International audienceSoil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low permeability soils, has, for the last decade, been combined with more conventional techniques and can significantly enhance the performance of several of these remediation technologies, including ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in tandem with conventional remediation techniques, to achieve improved remediation performance. Furthermore, we highlight new EK applications that may come to play a role in the sustainable treatment of the contaminated subsurface
- âŠ