220 research outputs found

    The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins

    Get PDF
    Wave tank tests aiming to reproduce realistic or site specific conditions will commonly involve using directionally spread, short-crested sea states. The measurement of these directional characteristics is required for the purposes of calibrating and validating the modelled sea state. Commonly used methods of directional spectrumreconstruction, based on directional spreading functions, have an inherent level of uncertainty associated with them. In this paper we aim to reduce the uncertainty in directional spectrum validation by introducing the SPAIR (Single-summation PTPD Approach with In-line Reflections) method, in combination with a directional wave gauge array. A variety of wave conditions were generated in the FloWave Ocean Energy Research Facility, Edinburgh, UK, to obtain a range of sea state and reflection scenarios. The presented approach is found to provide improved estimates of directional spectra over standardmethods, reducing the mean apparent directional deviation down to below 6% over the range of sea states. Additionally, the method isolates incident and reflected spectra in both the frequency and time domain, and can separate these wave systems over 360°. The accuracy of themethod is shown to be only slightly sensitive to the level of in-line reflectionpresent,but at present cannot dealwithoblique reflections. The SPAIRmethod, as presented or with slightmodification, will allow complex directional sea states to be validated more effectively, enabling multidirectional wave basins to simulate realistic wave scenarios with increased confidence

    Comments on the Boundary Scattering Phase

    Full text link
    We present a simple solution to the crossing equation for an open string worldsheet reflection matrix, with boundaries preserving a SU(1|2)^2 residual symmetry, which constrains the boundary dressing factor. In addition, we also propose an analogous crossing equation for the dressing factor where extra boundary degrees of freedom preserve a SU(2|2)^2 residual symmetry.Comment: 14 pages, 2 figures; v2: affiliation correcte

    The Zamolodchikov-Faddeev algebra for open strings attached to giant gravitons

    Full text link
    We extend the Zamolodchikov-Faddeev algebra for the superstring sigma model on AdS5×S5AdS_{5}\times S^{5}, which was formulated by Arutyunov, Frolov and Zamaklar, to the case of open strings attached to maximal giant gravitons, which was recently considered by Hofman and Maldacena. We obtain boundary SS-matrices which satisfy the standard boundary Yang-Baxter equation.Comment: 22 pages, no figure; added a referenc

    Electrified BPS Giants: BPS configurations on Giant Gravitons with Static Electric Field

    Full text link
    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field.Comment: 32 pages, 1 eps figure; v2: Presentation of derivation of light-cone Hamiltonian improved, Refs adde

    Constraints on charged Higgs bosons from D(s)+- -> mu+- nu and D(s)+- -> tau+- nu

    Full text link
    The decays D(s)+- -> mu+- nu and D(s)+- -> tau+- nu have traditionally been used to measure the D(s)+- meson decay constant f_D(s). Recent measurements at CLEO-c and the B factories suggest a branching ratio for both decays somewhat higher than the Standard Model prediction using f_D(s) from unquenched lattice calculations. The charged Higgs boson (H+-) in the Two Higgs Doublet Model (Type II) would also mediate these decays, but any sizeable contribution from H+- can only suppress the branching ratios and consequently is now slightly disfavoured. It is shown that constraints on the parameters tan(beta) and m_H+- from such decays can be competitive with and complementary to analogous constraints derived from the leptonic meson decays B+- -> tau+- nu_tau and K+- -> mu+- nu_mu, especially if lattice calculations eventually prefer f_D(s) < 250 MeV.Comment: 18 pages, 4 figure

    BPS Condensates, Matrix Models and Emergent String Theory

    Get PDF
    A prescription is given for computing anomalous dimensions of single trace operators in SYM at strong coupling and large NN using a reduced model of matrix quantum mechanics. The method involves treating some parts of the operators as "BPS condensates" which, in certain limit, have a dual description as null geodesics on the S5S^5. In the gauge theory, the condensate is similar to a representative of the chiral ring and it is described by a background of commuting matrices. Excitations around these condensates correspond to excitations around this background and take the form of "string bits" which are dual to the "giant magnons" of Hofman and Maldacena. In fact, the matrix model approach gives a {\it quantum} description of these string configurations and explains why the infinite momentum limit suppresses the quantum effects. This method allows, not only to derive part of the classical sigma model Hamiltonian of the dual string (in the infinite momentum limit), but also its quantum canonical structure. Therefore, it provides an alternative method of testing the AdS/CFT correspondence without the need of integrability.Comment: 36 pages, 1 figure, 2 appendices, v2: references adde

    A Monte-Carlo study of the AdS/CFT correspondence: an exploration of quantum gravity effects

    Get PDF
    In this paper we study the AdS/CFT correspondence for N=4 SYM with gauge group U(N), compactified on S^3 in four dimensions using Monte-Carlo techniques. The simulation is based on a particular reduction of degrees of freedom to commuting matrices of constant fields, and in particular, we can write the wave functions of these degrees of freedom exactly. The square of the wave function is equivalent to a probability density for a Boltzman gas of interacting particles in six dimensions. From the simulation we can extract the density particle distribution for each wave function, and this distribution can be interpreted as a special geometric locus in the gravitational dual. Studying the wave functions associated to half-BPS giant gravitons, we are able to show that the matrix model can measure the Planck scale directly. We also show that the output of our simulation seems to match various theoretical expectations in the large N limit and that it captures 1/N effects as statistical fluctuations of the Boltzman gas with the expected scaling. Our results suggest that this is a very promising approach to explore quantum corrections and effects in gravitational physics on AdS spaces.Comment: 40 pages, 7 figures, uses JHEP. v2: references adde

    Experimental String Field Theory

    Get PDF
    We develop efficient algorithms for level-truncation computations in open bosonic string field theory. We determine the classical action in the universal subspace to level (18,54) and apply this knowledge to numerical evaluations of the tachyon condensate string field. We obtain two main sets of results. First, we directly compute the solutions up to level L=18 by extremizing the level-truncated action. Second, we obtain predictions for the solutions for L > 18 from an extrapolation to higher levels of the functional form of the tachyon effective action. We find that the energy of the stable vacuum overshoots -1 (in units of the brane tension) at L=14, reaches a minimum E_min = -1.00063 at L ~ 28 and approaches with spectacular accuracy the predicted answer of -1 as L -> infinity. Our data are entirely consistent with the recent perturbative analysis of Taylor and strongly support the idea that level-truncation is a convergent approximation scheme. We also check systematically that our numerical solution, which obeys the Siegel gauge condition, actually satisfies the full gauge-invariant equations of motion. Finally we investigate the presence of analytic patterns in the coefficients of the tachyon string field, which we are able to reliably estimate in the L -> infinity limit.Comment: 37 pages, 6 figure

    Pinch Technique and the Batalin-Vilkovisky formalism

    Get PDF
    In this paper we take the first step towards a non-diagrammatic formulation of the Pinch Technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the Pinch Technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful non-linear identities, which express the Background Field Method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic anti-field; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.Comment: 45 pages, uses axodraw; typos corrected, one figure changed, final version to appear in Phys.Rev.

    Giant Gravitons - with Strings Attached (III)

    Full text link
    We develop techniques to compute the one-loop anomalous dimensions of operators in the N=4{\cal N}=4 super Yang-Mills theory that are dual to open strings ending on boundstates of sphere giant gravitons. Our results, which are applicable to excitations involving an arbitrary number of open strings, generalize the single string results of hep-th/0701067. The open strings we consider carry angular momentum on an S3^3 embedded in the S5^5 of the AdS5×_5\timesS5^5 background. The problem of computing the one loop anomalous dimensions is replaced with the problem of diagonalizing an interacting Cuntz oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for open strings propagating on multiple branes can arise dynamically.Comment: 66 pages; v2: improved presentatio
    • 

    corecore