1,167 research outputs found

    Liquid-Solid Transition of Hard Spheres Under Gravity

    Full text link
    We investigate the liquid-solid transition of two dimensional hard spheres in the presence of gravity. We determine the transition temperature and the fraction of particles in the solid regime as a function of temperature via Even-Driven molecular dynamics simulations and compare them with the theoretical predictions. We then examine the configurational statistics of a vibrating bed from the view point of the liquid-solid transition by explicitly determining the transition temperature and the effective temperature, T, of the bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure

    The Chandra Deep protocluster survey : evidence for an enhancement of AGN activity in the SSA22 protocluster at z = 3.09

    Get PDF
    We present results from a new ultra-deep ≈400 ks Chandra observation of the SSA22 protocluster at z = 3.09. We have studied the X-ray properties of 234 z ~ 3 Lyman Break Galaxies (LBGs; protocluster and field) and 158 z = 3.09 Lyα Emitters (LAEs) in SSA22 to measure the influence of the high-density protocluster environment on the accretion activity of supermassive black holes (SMBHs) in these UV-selected star-forming populations. We detect individually X-ray emission from active galactic nuclei (AGNs) in six LBGs and five LAEs; due to small overlap between the LBG and LAE source population, ten of these sources are unique. At least six and potentially eight of these sources are members of the protocluster. These sources have rest-frame 8-32 keV luminosities in the range of L 8-32 keV = (3-50) ×1043 ergs s-1and an average observed-frame 2-8 keV to 0.5-2 keV band ratio (BR) of ≈0.8 (mean effective photon index of Γeff≈ 1.1), suggesting significant absorption columns of N H gsim 1022-1024 cm-2. We find that the fraction of LBGs and LAEs in the z = 3.09 protocluster harboring an AGN with L 8-32 keV gsim 3 × 1043 ergs s-1is 9.5+12.7 -6.1% and 5.1+6.8 -3.3%, respectively. These AGN fractions are somewhat larger (by a mean factor of 6.1+10.3 -3.6 significant at the ≈95% confidence level) than z ~ 3 sources found in lower-density "field" environments. Theoretical models imply that these results may be due to the presence of more actively growing and/or massive SMBHs in LBGs and LAEs within the protocluster compared to the field. Such a result is expected in a scenario where enhanced merger activity in the protocluster drives accelerated galaxy and SMBH growth at zgsim 2-3. Using Spitzer IRAC imaging we found that the fraction of IRAC-detected LBGs is significantly larger in the protocluster than in the field (by a factor of 3.0+2.0 -1.3). From these data, we constrained the median rest-frame H-band luminosity in the protocluster to be gsim 1.2-1.8 times larger than that for the field. When combined with our X-ray data, this suggests that both galaxies and SMBHs grew more rapidly in protocluster environments

    The average submillimetre properties of Lyman α blobs at z = 3

    Get PDF
    Ly α blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly α emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold gas streaming on to a central galaxy, providing an opportunity to directly observe the ‘cold accretion’ mode of galaxy growth. Star-forming galaxies in LABs could be dust obscured and therefore detectable only at longer wavelengths. We stack deep Submillimetre Common User Bolometer Array 2 (SCUBA-2) observations of the Small Selected Area 22h field to determine the average 850 μm flux density of 34 LABs. We measure S850 = 0.6 ± 0.2 mJy for all LABs, but stacking the LABs by size indicates that only the largest third (area ≥1794 kpc2) have a mean detection, at 4.5σ, with S850 = 1.4 ± 0.3 mJy. Only two LABs (1 and 18) have individual SCUBA-2 >3.5σ detections at a depth of 1.1 mJy beam−1. We consider two possible mechanisms for powering the LABs and find that central star formation is likely to dominate the emission of Ly α, with cold accretion playing a secondary role

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (X−X^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all X−X^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the X−X^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different X−X^- states unbind are surprisingly small compared to the well width, the observation of strongly bound X−X^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of X−X^- recombination

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom

    Automated Coronal Hole Detection using Local Intensity Thresholding Techniques

    Full text link
    We identify coronal holes using a histogram-based intensity thresholding technique and compare their properties to fast solar wind streams at three different points in the heliosphere. The thresholding technique was tested on EUV and X-ray images obtained using instruments onboard STEREO, SOHO and Hinode. The full-disk images were transformed into Lambert equal-area projection maps and partitioned into a series of overlapping sub-images from which local histograms were extracted. The histograms were used to determine the threshold for the low intensity regions, which were then classified as coronal holes or filaments using magnetograms from the SOHO/MDI. For all three instruments, the local thresholding algorithm was found to successfully determine coronal hole boundaries in a consistent manner. Coronal hole properties extracted using the segmentation algorithm were then compared with in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results indicate that flux tubes rooted in coronal holes expand super-radially within 1 AU and that larger (smaller) coronal holes result in longer (shorter) duration high-speed solar wind streams

    X-ray Survey Results on Active Galaxy Physics and Evolution

    Full text link
    This "pedagogical" review describes the key Chandra and XMM-Newton extragalactic surveys to date and details some of their implications for AGN physics and evolution. We additionally highlight two topics of current widespread interest: (1) X-ray constraints on the AGN content of luminous submillimeter galaxies, and (2) the demography and physics of high-redshift (z > 4) AGN as revealed by X-ray observations. Finally, we discuss prospects for future X-ray surveys with Chandra, XMM-Newton, and upcoming missions.Comment: 26 pages, in Physics of Active Galactic Nuclei at All Scales, eds. Alloin D., Johnson R., Lira P. (Springer-Verlag, Berlin), version with all figures at http://www.astro.psu.edu/users/niel/papers/papers.htm

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    J/Psi Suppression in Heavy Ion Collisions at the CERN SPS

    Full text link
    We reexamine the production of J/Psi and other charmonium states for a variety of target-projectile choices at the SPS. For this study we use a newly constructed cascade code LUCIFER II, which yields acceptable descriptions of both hard and soft processes, specifically Drell-Yan and hidden charm production, and soft energy loss and meson production, at the SPS. Glauber calculations of other authors are redone, and compared directly to the cascade results. The modeling of the charmonium states differs from that of earlier workers in its unified treatment of the hidden charm meson spectrum, which is introduced from the outset as a set of coupled states. The result is a description of the NA38 and NA50 data in terms of a conventional hadronic picture. The apparently anomalous suppression found in the most massive Pb+Pb system arises from three sources: destruction in the initial nucleon-nucleon cascade, use of coupled channels to exploit the larger breakup in the less bound Chi and Psi' states, and comover interaction in the final low energy phase.Comment: 36 pages (15 figures

    An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field-South: The AGN Fraction and X-Ray Properties of Submillimeter Galaxies

    Get PDF
    The large gas and dust reservoirs of submillimeter galaxies (SMGs) could potentially provide ample fuel to trigger an active galactic nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with Atacama Large Millimeter/submillimeter Array (ALMA) and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submillimeter-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey. We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which eight were identified as AGNs using several techniques that enable cross-checking. The other two X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star formation activity. Six of the eight SMG-AGNs are moderately/highly absorbed, with N H > 1023 cm?2. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 17−6+16%17^{+16}_{-6}\% for AGNs with rest-frame 0.5-8?keV absorption-corrected luminosity ?7.8 × 1042?erg?s?1; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found four potential SMG-AGNs in our stacking sample
    • …
    corecore