The average submillimetre properties of Lyman α blobs at z = 3

Abstract

Ly α blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly α emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold gas streaming on to a central galaxy, providing an opportunity to directly observe the ‘cold accretion’ mode of galaxy growth. Star-forming galaxies in LABs could be dust obscured and therefore detectable only at longer wavelengths. We stack deep Submillimetre Common User Bolometer Array 2 (SCUBA-2) observations of the Small Selected Area 22h field to determine the average 850 μm flux density of 34 LABs. We measure S850 = 0.6 ± 0.2 mJy for all LABs, but stacking the LABs by size indicates that only the largest third (area ≥1794 kpc2) have a mean detection, at 4.5σ, with S850 = 1.4 ± 0.3 mJy. Only two LABs (1 and 18) have individual SCUBA-2 >3.5σ detections at a depth of 1.1 mJy beam−1. We consider two possible mechanisms for powering the LABs and find that central star formation is likely to dominate the emission of Ly α, with cold accretion playing a secondary role

    Similar works