34 research outputs found

    Factorization of natural 4 × 4 patch distributions

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-30212-4_15Revised and Selected Papers of ECCV 2004 Workshop SMVP 2004, Prague, Czech Republic, May 16, 2004The lack of sufficient machine readable images makes impossible the direct computation of natural image 4 × 4 block statistics and one has to resort to indirect approximated methods to reduce their domain space. A natural approach to this is to collect statistics over compressed images; if the reconstruction quality is good enough, these statistics will be sufficiently representative. However, a requirement for easier statistics collection is that the method used provides a uniform representation of the compression information across all patches, something for which codebook techniques are well suited. We shall follow this approach here, using a fractal compression–inspired quantization scheme to approximate a given patch B by a triplet (D B , μ B , σ B ) with σ B the patch’s contrast, μ B its brightness and D B a codebook approximation to the mean–variance normalization (B – μ B )/σ B of B. The resulting reduction of the domain space makes feasible the computation of entropy and mutual information estimates that, in turn, suggest a factorization of the approximation of p(B) ≃ p(D B , μ B , σ B ) as p(D B , μ B , σ B ) ≃ p(D B )p(μ)p(σ)Φ(|| ∇ ||), with Φ being a high contrast correction.With partial support of Spain’s CICyT, TIC 01–57

    The Geminga Fraction

    Get PDF
    Radio-quiet gamma-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the gamma-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population

    Magnetohydrodynamic Oscillations in the Solar Corona and Earth’s Magnetosphere: Towards Consolidated Understanding

    Full text link

    A New Information Measure for Natural Images

    No full text
    corecore