10 research outputs found

    Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209

    Get PDF
    Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin period of 424 ms that contains at least two strong absorption features in its energy spectrum. This neutron star has been identified as a member of the radio-quiet compact central objects in supernova remnants. It has been found that 1E 1207.4-5209 is not spinning down monotonically suggesting that this neutron star undergoes strong, frequent glitches, contains a fall-back disk, or possess a binary companion. Here, we report on a sequence of seven XMM-Newton observations of 1E 1207.4-5209 performed during a 40 day window in June/July 2005. Due to unanticipated variance in the phase measurements beyond the statistical uncertainties, we could not identify a unique phase-coherent timing solution. The three most probable timing solutions give frequency time derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order of significance). We conclude that the local frequency derivative during our XMM-Newton observing campaign differs from the long-term spin-down rate by more than an order of magnitude, effectively ruling out glitch models for 1E 1207.4-5209. If the long-term spin frequency variations are caused by timing noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than in other pulsars with similar period derivatives. Therefore, it is highly unlikely that the spin variations are caused by the same physical process that causes timing noise in other isolated pulsars. The most plausible scenario for the observed spin irregularities is the presence of a binary companion to 1E 1207.4-5209. We identified a family of orbital solutions that are consistent with our phase-connected timing solution, archival frequency measurements, and constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds. D. Page, R. Turolla & S. Zan

    Quantum Vacuum Experiments Using High Intensity Lasers

    Full text link
    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur

    Pharmacophore elements of the TIPP class of delta opioid receptor antagonists

    Full text link
    A series of tri-and tetrapeptides sharing the amino-terminal dipeptide unit Tyr-Tic, found in the high-affinity delta opioid receptor antagonist Tyr-Tic-Phe-Phe (TIPP), was prepared and evaluated in receptor binding assays to explore the role(s) of the phenylalanine residues in positions 3 and 4. It was found that aromaticity of residues 3 and 4 is not required for high affinity, a lipophilic side chain in either location being sufficient, as evidenced by the high delta receptor binding affinities observed for the tetrapeptide Tyr-Tic-Ala-Leu and the tripeptide Tyr-Tic-Leu. These results support the suggestion of Temussi et al. [Biochem. Biophys. Res. Commun., 198 (1994) 933] that the aromatic side chain of the Tic residue corresponds to the aromatic side chain found in residues 3 or 4 in other delta-selective peptide series.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43172/1/10989_2004_Article_BF00126275.pd

    Neutron Stars—Thermal Emitters

    No full text

    Plant hormones and seed germination

    No full text

    Magnetic White Dwarfs

    No full text
    corecore