1,144 research outputs found
Morphological differentiation correlates with ecological but not with genetic divergence in a Gehyra gecko
Body size affects life history, the ecological niche of an organism and its interactions with other organisms. Resultantly, marked differences in body size between related organisms are often an indication of a species boundary. This is particularly evident in the Gehyra variegata species complex of geckos, which displays differential body sizes between genetically divergent species, but high levels of intraspecific morphological conservatism. We report on a Gehyra population that displays extraordinary body size differentiation in comparison with other G. variegata species. We used morphological and environmental data to show this population is phenotypically and ecologically distinct from its parapatric congener Gehyra lazelli and that morphology and ecology are significantly correlated. Contrastingly, mtDNA analysis indicates paraphyly between the two groups, and allele frequencies at six microsatellite loci show no population structure concordant with morphoâ/ecotype. These results suggest either ecological speciation or environmentally induced phenotypic polymorphism, in an otherwise morphologically conservative group.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90603/1/j.1420-9101.2012.02460.x.pd
Zero-Temperature Dynamics of Ising Spin Systems Following a Deep Quench: Results and Open Problems
We consider zero-temperature, stochastic Ising models with nearest-neighbor
interactions and an initial spin configuration chosen from a symmetric
Bernoulli distribution (corresponding physically to a deep quench). Whether a
final state exists, i.e., whether each spin flips only finitely many times as
time goes to infinity (for almost every initial spin configuration and
realization of the dynamics), or if not, whether every spin - or only a
fraction strictly less than one - flips infinitely often, depends on the nature
of the couplings, the dimension, and the lattice type. We review results,
examine open questions, and discuss related topics.Comment: 10 pages (LaTeX); to appear in Physica
Suggestion, hypnosis and hypnotherapy: a survey of use, knowledge and attitudes of anaesthetists
Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsClinical hypnosis is a skill of using words and gestures (frequently called suggestions) in particular ways to achieve specific outcomes. It is being increasingly recognised as a useful intervention for managing a range of symptoms, especially pain and anxiety. We surveyed all 317 South Australian Fellows and trainees registered with ANZCA to determine their use, knowledge of, and attitudes towards positive suggestion, hypnosis and hypnotherapy in their anaesthesia practice. The response rate was 218 anaesthetists (69%). The majority of respondents (63%) rated their level of knowledge on this topic as below average. Forty-eight per cent of respondents indicated that there was a role for hypnotherapy in clinical anaesthesia, particularly in areas seen as traditional targets for the modality, i.e. pain and anxiety states. Nearly half of the anaesthetists supported the use of hypnotherapy and positive suggestions within clinical anaesthesia. Those respondents who had experience of clinical hypnotherapy were more likely to support hypnosis teaching at undergraduate or postgraduate level when compared with those with no experience.http://www.aaic.net.au/Article.asp?D=200408
Raman spectroscopic analysis of the effect of the lichenicolous fungus Xanthoriicola physciae on its lichen host
YesLichenicolous (lichen-dwelling) fungi have been extensively researched taxonomically over many years, and phylogenetically in recent years, but the biology of the relationship between the invading fungus and the lichen host has received limited attention, as has the effects on the chemistry of the host, being difficult to examine in situ. Raman spectroscopy is an established method for the characterization of chemicals in situ, and this technique is applied to a lichenicolous fungus here for the first time. Xanthoriicola physciae occurs in the apothecia of Xanthoria parietina, producing conidia at the hymenium surface. Raman spectroscopy of apothecial sections revealed that parietin and carotenoids were destroyed in infected apothecia. Those compounds protect healthy tissues of the lichen from extreme insolation and their removal may contribute to the deterioration of the apothecia. Scytonemin was also detected, but was most probably derived from associated cyanobacteria. This work shows that Raman spectroscopy has potential for investigating changes in the chemistry of a lichen by an invading lichenicolous fungus.This work was completed while D.L.H. was in receipt of an award from the Ministerio de Economica y Competitividad of Spain (Proyectos CGL 2014-55542-P)
Glueball plus Pion Production in Photon-Photon Collisions.
We here compute the reaction
for various glueball candidates and their assumed quantum states, using a
non-relativistic gluon bound-state model for the glueball.Comment: To appear in Zeit. fur Phys. C; Plain Latex file, 16 pages; 5 figures
appended as a uuencoded postscript file
Analysis of Dislocation Mechanism for Melting of Elements
The melting of elemental solids is modelled as a dislocation-mediated
transition on a lattice. Statistical mechanics of linear defects is used to
obtain a new relation between melting temperature, crystal structure, atomic
volume, and shear modulus that is accurate to 17% for at least half of the
Periodic Table.Comment: 8 pages, LaTeX, to appear in Solid State Com
Recommended from our members
Feasibility study and design concept for an orbiting ice-penetrating radar sounder to characterize in three-dimensions the Europan ice mantle down to (and including) any ice/ocean interface
This report presents a radar sounding model based on the range of current working hypotheses for the nature of Europa's icy shell.Institute for Geophysic
Stress Transmission through Three-Dimensional Ordered Granular Arrays
We measure the local contact forces at both the top and bottom boundaries of
three-dimensional face-centered-cubic and hexagonal-close-packed granular
crystals in response to an external force applied to a small area at the top
surface. Depending on the crystal structure, we find markedly different results
which can be understood in terms of force balance considerations in the
specific geometry of the crystal. Small amounts of disorder are found to create
additional structure at both the top and bottom surfaces.Comment: 9 pages including 9 figures (many in color) submitted to PR
Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap
We study the numerical resolution of the time-dependent Gross-Pitaevskii
equation, a non-linear Schroedinger equation used to simulate the dynamics of
Bose-Einstein condensates. Considering condensates trapped in harmonic
potentials, we present an efficient algorithm by making use of a spectral
Galerkin method, using a basis set of harmonic oscillator functions, and the
Gauss-Hermite quadrature. We apply this algorithm to the simulation of
condensate breathing and scissors modes.Comment: 23 pages, 5 figure
Collective excitations of trapped Bose condensates in the energy and time domains
A time-dependent method for calculating the collective excitation frequencies
and densities of a trapped, inhomogeneous Bose-Einstein condensate with
circulation is presented. The results are compared with time-independent
solutions of the Bogoliubov-deGennes equations. The method is based on
time-dependent linear-response theory combined with spectral analysis of
moments of the excitation modes of interest. The technique is straightforward
to apply, is extremely efficient in our implementation with parallel FFT
methods, and produces highly accurate results. The method is suitable for
general trap geometries, condensate flows and condensates permeated with vortex
structures.Comment: 6 pages, 3 figures small typos fixe
- âŠ