597 research outputs found

    Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach

    Full text link
    We study voltage driven translocation of a single stranded (ss) DNA through a membrane channel. Our model, based on a master equation (ME) approach, investigates the probability density function (pdf) of the translocation times, and shows that it can be either double or mono-peaked, depending on the system parameters. We show that the most probable translocation time is proportional to the polymer length, and inversely proportional to the first or second power of the voltage, depending on the initial conditions. The model recovers experimental observations on hetro-polymers when using their properties inside the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR

    Dilepton Production at SPS-energy Heavy Ion Collisions

    Get PDF
    The production of dileptons is studied within a hadronic transport model. We investigate the sensitivity of the dilepton spectra to the initial configuration of the hadronic phase in a ultrarelativistic heavy ion collision. Possible in medium correction due to the modifications of pions and the pion form factor in a hadronic gas are discussed.Comment: Dedicated to Gerry Brown in honor of the 32nd celebration of his 39th birthday. 31 pages Latex including 13 eps-figures, uses psfig.sty and epsf.st

    Vortex pinning in high-Tc materials via randomly oriented columnar defects, created by GeV proton-induced fission fragments

    Full text link
    Extensive work has shown that irradiation with 0.8 GeV protons can produce randomly oriented columnar defects (CD's) in a large number of HTS materials, specifically those cuprates containing Hg, Tl, Pb, Bi, and similar heavy elements. Absorbing the incident proton causes the nucleus of these species to fission, and the recoiling fission fragments create amorphous tracks, i.e., CD's. The superconductive transition temperature Tc decreases linearly with proton fluence and we analyze how the rate depends on the family of superconductors. In a study of Tl-2212 materials, adding defects decreases the equilibrium magnetization Meq(H) significantly in magnitude and changes its field dependence; this result is modeled in terms of vortex pinning. Analysis of the irreversible magnetization and its time dependence shows marked increases in the persistent current density and effective pinning energy, and leads to an estimate for the elementary attempt time for vortex hopping, tau ~ 4x10^(-9) s.Comment: Submitted to Physica C; presentation at ISS-2001. PDF file only, 13 pp. tota

    Thermal photon production in high-energy nuclear collisions

    Full text link
    We use a boost-invariant one-dimensional (cylindrically symmetric) fluid dynamics code to calculate thermal photon production in the central rapidity region of S+Au and Pb+Pb collisions at SPS energy (s=20\sqrt{s}=20 GeV/nucleon). We assume that the hot matter is in thermal equilibrium throughout the expansion, but consider deviations from chemical equilibrium in the high temperature (deconfined) phase. We use equations of state with a first-order phase transition between a massless pion gas and quark gluon plasma, with transition temperatures in the range 150≀Tc≀200150 \leq T_c \leq 200 MeV.Comment: revised, now includes a_1 contribution. revtex, 10 pages plus 4 figures (uuencoded postscript

    Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors

    Full text link
    We derive the general 5-dimension metric structure of the Dp−DqDp-Dq system in type II superstring theory, and demonstrate the physical meaning of the parameters characterizing the 5-dimension metric structure of the \textit{holographic} QCD model by relating them to the parameters describing Regge trajectories. By matching the spectra of vector mesons ρ1\rho_1 with deformed Dp−DqDp-Dq soft-wall model, we find that the spectra of vector mesons ρ1\rho_1 can be described very well in the soft-wall D3−DqD3-Dq model, i.e, AdS5AdS_5 soft-wall model. We then investigate how well the AdS5AdS_5 soft-wall model can describe the Regge trajectory of axial-vector mesons a1a_1. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking in the vacuum, and a small negative z4z^4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde

    Spin configuration of top quark pair production with large extra dimensions at photon-photon colliders

    Get PDF
    Top quark pair production at photon-photon colliders is studied in low scale quantum gravity scenario. From the dependence of the cross sections on the spin configuration of the top quark and anti-quark, we introduce a new observable, top spin asymmetry. It is shown that there exists a special top spin basis where with the polarized parent electron beams the top spin asymmetry vanishes in the standard model but retains substantial values with the large extra dimension effects. We also present lower bounds of the quantum gravity scale MSM_S from total cross sections with various combinations of the laser, electron beam, and top quark pair polarizations. The measurements of the top spin state (t↑tˉ↓)(t_\uparrow\bar{t}_\downarrow) with unpolarized initial beams are shown to be most effective, enhancing by about 5% the MSM_S bounds with respect to totally unpolarized case.Comment: 18 pages, 4 figures, ReVTe

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics
    • 

    corecore