14 research outputs found

    Aplastic Anemia Complicating Orthotopic Liver Transplantation for Non-A, Non-B Hepatitis

    Get PDF
    Aplastic anemia developed in 9 of 32 patients (28 percent) undergoing orthotopic liver transplantation for acute non-A, non-B hepatitis, at one to seven weeks after the procedure. No patient previously had evidence of hematologic dysfunction or conditions known to be associated with aplastic anemia. No other cases of aplastic anemia were identified among 1463 patients undergoing liver transplantation for all other indications at the four centers participating in the study (chi-square = 415, P<0.001; 95 percent confidence interval for the incidence of aplastic anemia after transplantation for non-A, non-B hepatitis, 13 to 44 percent, vs. 0.00 to 0.13 percent for all other indications). The operative and postoperative treatment of these patients was not otherwise different, indicating that the aplastic anemia was a complication of the hepatitis, not of the transplantation procedure. Four of the nine patients died of complications due to infections. Three of the surviving patients have been followed for less than six months, one for one year, and one for two years. The two patients followed the longest have recovered marrow function to an appreciable degree, and two of the others have evidence of early recovery. We conclude that patients undergoing orthotopic liver transplantation for non-A, non-B hepatitis are at a high risk for the development of aplastic anemia. (N Engl J Med 1988; 319:393–6.) © 1988, Massachusetts Medical Society. All rights reserved

    Interactive efficacies of Elephantorrhiza elephantina and Pentanisia prunelloides extracts and isolated compounds against gastrointestinal bacteria

    Get PDF
    Elephantorrhiza elephantina (Burch.) Skeels (Fabaceae) and Pentanisia prunelloides (Klotzsch ex Eckl. & Zeyh.) Walp. (Rubiaceae) are two medicinal plants used extensively in southern Africa to treat various ailments. Often, decoctions and infusions from these two plants are used in combination specifically for stomach ailments. The antimicrobial activities of the methanol and aqueous extracts of the rhizomes of the two plants, as well as the two active ingredients from the plants [(−)-epicatechin and palmitic acid] have been determined apart and in combination against Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739) and Bacillus cereus (ATCC 11778). The minimum inhibitory concentration (MIC) values for the aqueous (0.50–16.00 mg/mL) and methanol (0.20–16.00 mg/mL) extracts independently demonstrated varied efficacies depending on the pathogen of study. When the two plants were combined in 1:1 ratios, synergistic to additive interactions (ΣFIC values 0.19–1.00) were noted. Efficacy for the two major compounds ranged between 0.13–0.63 mg/mL and mainly synergistic interactions were noted against E. faecalis and E. coli. The predominantly synergistic interactions noted between E. elephantina and P. prunelloides and major compounds, when tested in various ratios against these pathogens, provide some validation as to the traditional use of these two plants to treat bacterial gastrointestinal infections
    corecore