376 research outputs found
The Landau Pole and decays in the 331 bilepton model
We calculate the decay widths and branching ratios of the extra neutral boson
predicted by the 331 bilepton model in the framework of two
different particle contents. These calculations are performed taken into
account oblique radiative corrections, and Flavor Changing Neutral Currents
(FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices.
Contributions of the order of are obtained in the branching
ratios, and partial widths about one order of magnitude bigger in relation with
other non- and bilepton models are also obtained. A Landau-like pole arise at
3.5 TeV considering the full particle content of the minimal model (MM), where
the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The
Landau pole problem can be avoid at the TeV scales if a new leptonic content
running below the threshold at TeV is implemented as suggested by other
authors.Comment: 20 pages, 5 figures, LaTeX2
HI in Local Group analogs: what does it tell us about galaxy formation?
We present the results of our HI survey of six loose groups of galaxies
analogous to the Local Group. The survey was conducted using the Parkes
telescope and the Australia Telescope Compact Array to produce a census of all
the gas-rich galaxies and potential analogs to the high-velocity clouds (HVCs)
within these groups down to M(HI)<10^7 M(sun) as a test of models of galaxy
formation. We present the HI mass function and halo mass function for these
analogous groups and compare them with the Local Group and other environments.
We also demonstrate that our non-detection of HVC analogs in these groups
implies that they must have low HI masses and be clustered tightly around
galaxies, including around our own Milky Way, and are not distributed
throughout the Local Group.Comment: 5 pages, To appear in ESO Astrophysics Symposia: "Groups of Galaxies
in the Nearby Universe
Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile
Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5–10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2. Herein, we aimed to define other somatic events beyond TSC1/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in TSC1/TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2–46 Mb) was seen in 76% (16/21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0–7) per tumor were identified, unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530) and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (n = 10), TSC cortical tubers (n = 15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAX1, SIX3; and TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/q-value < 0.05). Immunohistochemistry supported the specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs have an extremely low somatic mutation rate, suggesting that TSC1/TSC2 loss is sufficient to drive tumor growth. The unique and highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional and epigenetic state that enables SEGA growth following two-hit loss of TSC1 or TSC2 and mTORC1 activation
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
The MeerKAT Fornax Survey. III. Ram-pressure stripping of the tidally interacting galaxy NGC 1427A in the Fornax cluster
We present MeerKAT Fornax Survey H I observations of NGC 1427A, a blue irregular galaxy with a stellar mass of ∼2 × 109 M⊙ located near the centre of the Fornax galaxy cluster. Thanks to the excellent resolution (1–6 kpc spatially, 1.4 km s−1 in velocity) and H I column density sensitivity (∼4 × 1019 to ∼1018 cm−2 depending on resolution), our data deliver new insights on the long-debated interaction of this galaxy with the cluster environment. We confirm the presence of a broad, one-sided, starless H I tail stretching from the outer regions of the stellar body and pointing away from the cluster centre. We find the tail to have 50% more H I (4 × 108 M⊙) and to be 3 times longer (70 kpc) than in previous observations. In fact, we detect scattered H I clouds out to 300 kpc from the galaxy in the direction of the tail – possibly the most ancient remnant of the passage of NGC 1427A through the intracluster medium of Fornax. Both the velocity gradient along the H I tail and the peculiar kinematics of H I in the outer region of the stellar body are consistent with the effect of ram pressure given the line-of-sight motion of the galaxy within the cluster. However, several properties cannot be explained solely by ram pressure and suggest an ongoing tidal interaction. This includes: the close match between dense H I and stars within the disturbed stellar body; the abundant kinematically anomalous H I; and the inversion of the H I velocity gradient near the base of the H I tail. We rule out an interaction with the cluster tidal field, and conclude that NGC 1427A is the result of a high-speed galaxy encounter or of a merger started at least 300 Myr ago, where ram pressure shapes the distribution and kinematics of the H I in the perturbed outer stellar body and in the tidal tails
An overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with HI masses from 10^6 to ~10^{11} M_sun, and luminosities from M_R ~ -12 to M_R ~ -22. The sample is selected to uniformly cover the available range in log(M_HI). Our extremely deep observations, down to HI column density limits of well below 10^{18} cm^{-2} - or a few hundred times fainter than the typical HI disks in galaxies - will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modelling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT's capabilities
The MeerKAT Fornax Survey. I. Survey description and first evidence of ram pressure in the Fornax galaxy cluster
The MeerKAT Fornax Survey maps the distribution and kinematics of atomic
neutral hydrogen gas (HI) in the nearby Fornax galaxy cluster using the MeerKAT
telescope. The 12 deg^2 survey footprint covers the central region of the
cluster out to ~ Rvir and stretches out to ~ 2 Rvir towards south west to
include the NGC 1316 galaxy group. The HI column density sensitivity (3 sigma
over 25 km/s) ranges from 5e+19/cm^2 at a resolution of ~ 10" (~ 1 kpc at the
20 Mpc distance of Fornax) down to ~ 1e+18/cm^2 at ~ 1' (~ 6 kpc), and slightly
below this level at the lowest resolution of ~ 100" (~ 10 kpc). The HI mass
sensitivity (3 sigma over 50 km/s) is 6e+5 Msun. The HI velocity resolution is
1.4 km/s. In this paper we describe the survey design and HI data processing,
and we present a sample of six galaxies with long, one-sided, star-less HI
tails (of which only one was previously known) radially oriented within the
cluster and with measurable internal velocity gradients. We argue that the
joint properties of the HI tails represent the first unambiguous evidence of
ram pressure shaping the distribution of HI in the Fornax cluster. The
disturbed optical morphology of all host galaxies supports the idea that the
tails consist of HI initially pulled out of the galaxies' stellar body by tidal
forces. Ram pressure was then able to further displace the weakly bound HI and
give the tails their present direction, length and velocity gradient.Comment: Astronomy & Astrophysics, accepted. Data available at the MeerKAT
Fornax Survey website https://sites.google.com/inaf.it/meerkatfornaxsurve
- …