Subependymal giant cell astrocytomas are characterized by mTORC1
hyperactivation, a very low somatic mutation rate, and a unique

gene expression profile
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Abstract
Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of

patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms,
leading to death if untreated. SEGAs consistently show biallelic loss of 7SCI or TSC2. Herein, we aimed to define other somatic
events beyond 7SCI/TSC2 loss and identify potential transcriptional drivers that contribute to SEGA formation. Paired tumor-
normal whole-exome sequencing was performed on 21 resected SEGAs from 20 TSC patients. Pathogenic variants in 7SC1/

TSC2 were identified in 19/21 (90%) SEGAs. Copy neutral loss of heterozygosity (size range: 2.2—46 Mb) was seen in 76% (16/
21) of SEGAs (44% chr9q and 56% chr16p). An average of 1.4 other somatic variants (range 0—7) per tumor were identified,

unlikely of pathogenic significance. Whole transcriptome RNA-sequencing analyses revealed 190 common differentially
expressed genes in SEGA (n = 16, 13 from a prior study) in pairwise comparison to each of: low grade diffuse gliomas (n = 530)

and glioblastoma (n = 171) from The Cancer Genome Atlas (TCGA) consortium, ganglioglioma (rn = 10), TSC cortical tubers
(n=15), and multiple normal tissues. Among these, homeobox transcription factors (TFs) HMX3, HMX2, VAXI, SIX3; and
TFs IRF6 and EOMES were all expressed >12-fold higher in SEGAs (FDR/g-value < 0.05). Immunohistochemistry supported the

specificity of IRF6, VAX1, SIX3 for SEGAs in comparison to other tumor entities and normal brain. We conclude that SEGAs
have an extremely low somatic mutation rate, suggesting that 7SC1/TSC2 loss is sufficient to drive tumor growth. The unique and

highly expressed SEGA-specific TFs likely reflect the neuroepithelial cell of origin, and may also contribute to the transcriptional
and epigenetic state that enables SEGA growth following two-hit loss of 7SCI or 7SC2 and mTORCI1 activation.

Introduction

Subependymal giant cell astrocytomas (SEGAs) are slow
growing, glioneuronal brain neoplasms that represent 2% of
all pediatric brain tumors. SEGAs are seen almost exclusively
Sunnl e information The onli o of this aricle (hitoe/ in patients with tuberous sclerosis complex (TSC, MIM#
Suplesataynoratn e e rion il 0011191100, 191092, Approimatl. 5-10% of patets it
material, which is available to authorized users. TSC develop SEGAs, of which nearly all are diagnosed in
childhood [1-4]. TSC is a multisystem neurocutaneous
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cases, following the classic Knudson two hit model, leading
to complete loss of function of the tuberin-hamartin protein
complex and mTORC1 (mechanistic Target Of Rapamycin
Complex 1) hyperactivation [1, 5, 6]. Other genetic aberra-
tions, including partial loss of chr22 and BRAF V600E
mutation have been reported in a few cases [7, 8].

SEGAs develop from benign, smaller, histologically
similar lesions, known as subependymal nodules (SEN), near
the foramen of Monro. Although SEGAs are benign histo-
logically, they can cause serious neurological complications,
including obstructive hydrocephalus, intractable seizures, and
if left untreated can lead to death. Clinical diagnosis is based
on neuroimaging of TSC patients where SEGAs are defined
as having maximum diameter >10 mm and/or growth seen on
serial scans [2]. There are occasional patients in whom
SEGA-like lesions are seen and other features of TSC are not
prominent, as well as TSC patients in whom the SEGA
location is atypical. Histologically, SEGAs consist of large
cells resembling gemistocytic astrocytes that are arranged in
fascicles, sheets and nests; the tumor cells show variable
expression of glial and neuronal markers, with high levels of
cytoplasmic phospho-S6K, phospho-S6, and phospho-Stat3,
proteins downstream of mTORCI [1, 5].

Treatment options for SEGAs include mTORCI1 allosteric
inhibitors, rapamycin (sirolimus) and everolimus, termed
rapalogs, as well as surgical resection. However, resection is
challenging due to their deep intracranial location. On the
other hand, continuous rapalog treatment is required as tumors
can regrow when rapalog therapy is discontinued [2, 9-11].

The evidence that additional genetic events beyond
TSCI/TSC2 biallelic inactivation lead to SEGA formation
has been limited to date [5, 6]. Previous studies have shown
that SEGAs have a distinct gene expression profile com-
pared to periventricular normal brain [7, 12, 13]. However,
a comparison to other brain tumors has not been performed
previously and several questions remain regarding the
pathogenic mechanisms involved in SEGAs.

Herein, we aimed to define the prevalence of other somatic
genetic events that might contribute to SEGA formation in a
large series of resected SEGA tumors. In addition, we iden-
tified differentially expressed genes (DEGs) in SEGAs in
comparison to a broad panel of CNS tumors and cortical
tubers, in order to provide insight as to their cell of origin,
unravel novel aspects of their tumor biology, as well as to
identify potential transcriptional driver events for SEGAs.

Materials and methods
Patient recruitment and tumor collection

This study was conducted in compliance with Partners
Human Research Committee Institutional Review Board

Approval (2011P002651) at the Brigham and Women’s
Hospital and in compliance with the Office of Human
Research Studies (DF/HCC 10-417) at the Dana Farber
Cancer Institute. Signed informed consent or waiver of
consent was obtained from patients and/or their guardians,
and the sample collection and usage was in accordance with
the policies of the institutional review boards at the
respective institutions. All samples were de-identified for
analysis; we followed the Declaration of Helsinki (World
Medical Association Declaration of Helsinki, 2013. https:/
doi.org/10.1001/jama.2013.281053). The inclusion criteria
in the present study were diagnosis of SEGAs, confirmed by
histopathological assessment accordingly to the 2016 WHO
classification for CNS tumors (Fig. la, b) by experienced
neuropathologists, and a definite clinical diagnosis of TSC
based on current criteria [14-17].

Fresh-frozen surgically resected tumor specimen and/or
formalin-fixed paraffin-embedded (FFPE) samples (n =21)
and matching peripheral blood as normal control for com-
parison were obtained from 20 patients with TSC (male n =
10, female n = 10, age range: 1-47, median = 13.5 years),
for exome sequencing analysis. Clinicopathological data
were available for all cases (Table 1).

Histopathology studies

Conventional hematoxylin and eosin (H&E) staining was
performed. The tumor-cell content was estimated to be at
least 80% in all SEGA cases by H&E staining, except for
one case (SEGA-S19) in which tumor purity was reduced
due to the contamination with non-tumor and inflammatory
cells. Immunohistochemistry (IHC) was performed on 5-
micron tissue sections as described previously [6, 18].
Antibodies against the following proteins were used for
IHC: MAP2 (mouse clone HM2, Sigma 1:100), HLA-DR
(mouse clone CR3/43, DAKO, 1:100), CD3 (mouse
monoclonal, clone F7.2.38, DAKO; 1:200), pS6 (rabbit
polyclonal, Cell Signaling Technology, 1:50), GFAP (rab-
bit polyclonal, DAKO, 1:4,000), Vimentin (mouse clone
V9, DAKO, 1:1,000), NeuN (mouse clone MAB377,
Chemicon, 1:2,000); IRF6 (mouse monoclonal, Origene,
Cat. No. UMS500074, 1:500); SIX3 (rabbit polyclonal,
LSBio, Cat. No. LS-B9336-50, 1:4000); VAX1 (mouse
monoclonal, Origene, Cat. No. CF811439; 1:100). Infor-
mation for additional IHC staining is included in Supple-
mentary material.

Exome sequencing methods

Exome hybrid capture, library preparation, massively par-
allel sequencing (MPS), and bioinformatic analyses were
performed at the Broad Institute of MIT and Harvard, fol-
lowing standard methods. Briefly, genomic DNA was
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SEGA-S6

-

map2:

Fig. 1 MRI images and histologic features of SEGAs. a TI-
weighted coronal or sagittal gadolinium-enhanced MRI images
showing SEGAs in the right lateral ventricle near the foramen of
Monro (SEGA-S6, SEGA-S17), or in a similar location on the left
(SEGA-S8) in 3 TSC subjects before surgical resection. b H&E and
representative IHC images of the three corresponding SEGA tumors
(SEGA-S6, S8, S17). H&E staining shows classical histological
SEGA features, with giant cells in a mixed glial background with
blood vessels. Variable expression of the glial marker GFAP is seen,

sheared in a Covaris sonicator (Covaris, Woburn, MA,
USA) to fragments of 200-500 bp, and subject to capture
using the MPS Tllumina Exome (37.7 Mb of mainly exonic
territory; Agilent SureSelect All Exon V2) [19, 20]. Pooled
indexed libraries were sequenced on either the HiSeq 2000
or HiSeq 2500 instrument (Illumina platform), using 76 bp
paired-end sequencing. The mean coverage for the targeted
region was 105x (range: 49-267x) for all tumors and 113x
(range: 47-192x) for normal samples. An average of 76% in
the targeted region (range: 46-93%) was covered at >50x
for tumor, whereas it was 92% at >50x (range: 80-95%) for
normal.

Pre-processing and bioinformatics analysis of
MPS data

Demultiplexing/sample deconvolution, base alignment
and sequence quality control were performed using Picard
tools and the Firehose pipeline at the Broad Institute of
MIT and Harvard. Fastq files were generated and unique
reads were aligned to the human reference genome

SEGA-S8

SEGA-S17

-

with diffuse immunoreactivity in 2 of 3 samples shown here, with less
staining for MAP2. HLA-DR staining highlights variable numbers of
microglial cells, and CD3 staining shows presence of scant intratumor
T lymphocytes; Variable expression of the neuronal marker MAP2 is
seen. IHC is negative for the neuronal nuclear marker NeuN, but
positive for intermediate filament vimentin (SEGA-S17). Activation of
mTORCI1 in tumor giant cells is indicated by expression of pS6. Scale
bars: 100 um.

GRCh37(hg19) using BWA (v0.7.3a) [http://arxiv.org/a
bs/1303.3997] and Bowtie 2 (http://bowtie-bio.source
forge.net/bowtie2/index.shtml). Variant calling for single
nucleotide variants (SNVs) and insertion/deletions
(indels) was performed using Haplotype Caller in Genome
Analysis Toolkit (GATK, v3.0) Best Practices. Sequen-
cing data were then analyzed using the Cancer Genome
Analysis pipeline, as well as custom code in Python,
Matlab and Unix to enable the detection of TSC1/TSC2
deleterious sequence variants with low mutant allele fre-
quency (MAF) [5]. Somatic point mutations were called
by MuTect (http://www.broadinstitute.org/cancer/cga/
mutect/) and short insertions and deletions in sequencing
data were identified by SomaticIndelDetector. All variants
were annotated using Oncotator (http://www.broa
dinstitute.org/oncotator). We used ABSOLUTE to esti-
mate tumor purity, tumor cell ploidy, and to determine
chromosomal copy-numbers genome-wide [21]. All
somatic variant calls were reviewed manually using IGV
(https://software.broadinstitute.org/software/igv/), and
those reflecting sequencing or other artifacts were
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excluded. Variant nomenclature was confirmed by Muta-
lyzer (https://mutalyzer.nl/). SIFT and PROVEAN in
silico prediction tools (http://provean.jcvi.org/index.php)
were used to assess the functional effects of missense
variants. Called variants were validated by either Sanger
sequencing (variants with MAF > 10%) or amplicon MPS
method (variants with MAF < 10%) for 10 out 21 SEGAs
with DNA material available [22, 23].

Whole transcriptome RNA sequencing

Paired end RNA-sequencing (RNA-seq) was performed
on 3 SEGA tumors (SEGA-S3, S4, S19 with matching
exome data) at the Broad Institute of MIT and Harvard,
following standard methods (Illumina platform). Addi-
tional RNA-seq raw data were obtained from 13 SEGAs
from a previous study [6] and were reanalyzed for uni-
formity and downstream analyses. After quality assess-
ment and filtering for all SEGA tumors, raw reads were
mapped or aligned to the reference genome GRCh37
(hg19) build using the STAR program [24]. VIPER
(Visualization Pipeline for RNA-seq analysis) [25] QC
analysis for all combined 16 SEGAs revealed high quality
sequencing data with a median of ~25 million paired end
reads generated for each tumor (range: 21-97 M reads).
FPKM normalized values for all genes and their isoforms
were generated using Cufflinks v2.2.1. Raw data were
also converted into RSEM format for comparison to other
brain and adult solid tumors from The Cancer Genome
Atlas (TCGA) consortium and 10 gangliogliomas [26—
29]. We also performed gene fusion analysis to identify
any gene rearrangements using FusionInspector (https://
github.com/FusionInspector/Fusionlnspector/), as a pre-
vious study reported a single SEGA case with PRRC2B-
ALK fusion [30].

Statistical analysis

Statistical analyses were performed using the non-parametric
Mann—Whitney U-test in GraphPad Prism software (Graph-
pad Software Inc., La Jolla, CA). All p-values were corrected
applying the Benjamini—-Hochberg method. An adjusted p-
value/FDR < 0.05 was considered statistically significant. The
following convention was used in all figures: *p < 0.05; **p <
0.01; ***p <0.001; ****p <0.0001.

Results

Clinical and routine diagnostic studies

In this study, we evaluated 21 SEGAs from 20 patients with
TSC. Pre-operative brain MRIs demonstrated that these

tumors were present on the medial or lateral ventricular
wall, which is typical for these lesions (Fig. 1a and Table 1).
H&E staining showed classic histologic features for
SEGAs, featuring plump cells with abundant glassy eosi-
nophilic cytoplasm and enlarged nuclei with distinct
nucleoli (Fig. 1b). IHC showed variable expression of
GFAP, MAP2, and HLA-DR; with consistent labeling for
pS6, a marker of mMTORCI activation; and variable numbers
of CD3+ cells (Fig. 1b).

TSC1/TSC2 mutation analysis of SEGAs

Twenty-one paired SEGA-normal samples were analyzed
by exome sequencing. 7SC/ and TSC2 germline pathogenic
variants were identified in 18 of 20 (90%) patients (6 TSCI
mutations and 12 TSC2 mutations) and were similar to the
known pathogenic variant spectrum for these genes (Fig. 2a
and Table S1; SEGA-S15 had a large TSCI deletion, as
indicated by focal reduction in read depth for exons 18-23)
[4]. Copy neutral loss of heterozygosity (CN-LOH) was
seen in the TSC2 region of chr16p in 9 of 12 (82%) tumors
from subjects with pathogenic TSC2 variants, size range:
2.2-30.3 Mb (Fig. 2b, Fig. S1 and Table S1). CN-LOH was
also seen in chr9q encompassing 7SC/ in 6 SEGA tumors
from subjects with pathogenic 7SC! variants; size range:
6.7-46 Mb (Fig. 2b, Fig. S1 and Table S1). One tumor from
one subject (SEGA-S17), with no germline mutation
identified in either T7SCI or TSC2, had CN-LOH in chrl6p,
suggesting an occult germline mutation in 7SC2 (Table S1
and Fig. S1). CN-LOH regions had a variable size on both
chromosome 9 and 16, likely reflecting random mitotic
recombination events, as seen previously in TSC kidney
angiomyolipoma [31].

Exome sequence analysis

Exome sequencing revealed 30 somatic point variants/
indels in 10 of 21 (45%) tumor-normal matched samples,
with a range: 0—7 variants/tumor (overall median 0, average
1.4, Fig. 2c and Table S2). None of these 30 somatic var-
iants occurred in the same gene in different samples and 20
of 30 (67%) were subclonal, determined by ABSOLUTE.
Twenty-three of the 30 variants (77%) were missense
changes, of which 15 (65%) were classified as likely dele-
terious/damaging by in silico prediction analysis. None of
the genes with somatic alterations were known ‘cancer
genes’ [32]. These results suggest that these variants were
likely passenger events that do not contribute to SEGA
formation. We did not observe any mutations in BRAF in
this SEGA cohort (Table S2), similar to our findings in a
previous SEGA cohort [5].

We then compared the somatic mutation rate that we
observed in SEGAs from our internal cohort (n=21)
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Fig. 2 Germline and somatic alterations in SEGAs. a Position and
type of germline and somatic 7SCI/TSC2 pathogenic variants in 19
SEGAs. b Examples of Copy Neutral Loss of Heterozygosity (CN-
LOH) in two representative SEGAs (SEGA-S9 and S13), encom-
passing  chr9:134,398,493-141,070,719  (6.7Mb, top) and
chr16:304,514-4,942,099 (4.64 Mb, bottom) (GRCh37/hg19). SNP
allele frequency (AF) distribution is shown across the entire chromo-
some with regions of AF skewed from the expected 0.5 (range:

including 16 tumors from a previous study [6], with rates
that have been reported for a wide variety of other brain
tumors (Fig. 2d and Table S3), as well as other TCGA
tumors (Fig. S2) [33]. SEGAs in our analysis showed a
similar, though slightly lower, mutation burden (SNVs per
Mb) to pediatric medulloblastoma and hindbrain epen-
dymoma, and a substantially lower mutation burden than
both pediatric and adult low-grade gliomas.

Copy number alteration (CNA) analysis revealed sub-
clonal chromosomal gains and/or losses in 5/21 (24%)
tumors at either the arm or whole chromosome level,
including chr21 and chr22 loss; and chr5 and chr19p gain
(Fig. 2e). These results are similar to those reported
previously, in which CNAs were seen in 3/14 (21%)
SEGAs for several chromosomes (1, 5, 7, 11, 12, 17, and
19) [6].

Gene expression RNA-seq analyses

We analyzed RNA-seq data for 16 SEGA tumors (see
“Materials and methods”) in comparison to the TCGA brain
tumor cohort, including low grade gliomas (LGG; n = 530)
and TCGA adult glioblastomas (GBM; n = 171), as well as
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SEGAs in comparison to a broad range of pediatric and adult brain
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scale. e Five of 21 (19%) SEGASs harbor subclonal chromosomal copy
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cortical tubers (n=15), SEN (n=2), and normal brain
samples (n = 11) [6, 29]. This set of 16 SEGA tumors was
relatively pure, as reflected by the mutant allele frequency
of either TSC1 or TSC2 mutation for each (SEGA-S3, S4,
S20 and Martin et al. 2017 [6]).

To discern the potential relationship between SEGA and
the large panel of brain tumors studied by TCGA, we per-
formed a de novo clustering analysis for 3060 most variable
genes in the combined cohort (n=745) by consensus
Bayesian non-negative matrix factorization, and identified
four distinct clusters (Cluster 1-4 in Fig. 3a and Table S4)
[34]. Of note, 15 of 16 SEGAs were co-clustered with most
GBM samples (95%, 163 out of 171) and 20% of LGG
samples (103 out of 530) in Cluster 3. The set of 103 LGG
in cluster 3 included 60 astrocytomas, 15 oligoas-
trocytomas, 16 oligodendrogliomas, and 12 unclassified
brain tumors. Note that we recognize that the oligoas-
trocytoma designation for a subset of gliomas is no longer
used; we retain that term here to be consistent with
nomenclature used in TCGA project. The single SEGA that
was not in cluster 3 was from Martin et al. [6] and was
grouped in Cluster 1 with normal brain, suggesting that it
was highly contaminated with normal brain.
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Fig. 3 Comparison of RNA-Seq expression of SEGAs to other
brain tumors and cortical tubers. a A heatmap is shown reflecting a
de novo clustering analysis using 3060 most variable genes in the
combined cohort of: SEGAs (n = 16), TCGA LGG (n = 530), TCGA
GBM (n=171), cortical tubers (n=15), SEN samples (n =2), and
normal brain samples (n = 11). Pairwise sample by sample Spearman
rank correlation was determined and used to generate the heatmap that
is shown. Fifteen of 16 (96%) SEGAs are in Cluster 3, form the red
square in the upper left corner of Cluster 3, reflecting a high rank
correlation among them. Cluster 3 also contains most GBM (n = 163)

To discern genes whose expression was specifically
altered in SEGAs, and might contribute to SEGA devel-
opment, we performed DESeq2 analyses using normalized
read counts (RSEM). Pair wise comparisons were made
between the SEGAs and each of the histological subtypes of
LGG and GBM in Cluster 3 (www.qlucore.com) to identify
gene expression differences (Fig. 3a, b) [29, 34, 35]. We
identified several hundred genes that were differentially
expressed between SEGAs and other tumors at a false
discovery rate (FDR)/g-value <0.05 and p-value <0.002
(Fig. 3b, Fig. S3a-f and Tables S5-S9).

Analysis of multiple housekeeping genes (e.g., GAPDH,
LDHA, SDHA, and ABCF1) across different tumor samples
analyzed showed no significant differences in expression,
confirming a lack of artifact or bias due to different sample
sets, library preparation, and/or sequencing methods
(Fig. S4). A set of 190 genes was found to be differentially
expressed in SEGAs, all consistently in the same direction
(either up or downregulated), in comparison to each of the
other sample types (Fig. 3b, Table S10). One hundred fifty
one of these 190 common DEGs were also differentially
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and a subset of TCGA LGG (n =103). b Venn diagram of all DEGs
(FDR < 0.05) in SEGAs versus each of five other histological subtypes
of brain tumors/cortical tubers. Notably, a set of 190 genes were dif-
ferentially expressed in SEGAs compared to each of the other five
sample types. The TFs that are upregulated in SEGAs are shown at
right. ¢ Violin dot plots of the top 6 TFs that were differentially and
highly expressed in SEGAs compared to other brain tumors and cor-
tical tubers. d GO pathways showing enrichment for the 190 DEGs:
top, pathways enriched in genes downregulated in SEGA; bottom,
pathways enriched in genes upregulated in SEGA.

expressed in SEGAs in comparison to normal brain (46
upregulated, 105 downregulated; FDR <0.05, llog,fold
changel > 1) (Table S10).

Since many TFs regulate cell lineage and act as drivers
of cancer growth in different cancer types, we chose to
focus our analysis on TFs with higher expression in
SEGASs compared to these other entities. Fourteen of 190
DEGs were TFs, of which 8 were upregulated (Table 2
and Table S11), including HMX3, HMX2, IRF6, SIX3,
EOMES, and VAXI, each with a median fold change > 12
(Fig. 3c and Table 2). We also found that the expression
of HMX3, HMX2, SIX3, and VAXI was much higher in
SEGASs than any other TCGA cancer type (2463 tumors of
27 different histological types) and normal tissues
{~8500 samples from 30 normal tissue types; the
Gene and Tissue Expression (GTEx) project} (Figs. 4, 5)
[36]. IRF6 and EOMES were also highly expressed in
SEGAs but were also seen at relatively high levels in
some other cancer types and normal tissues (Figs. 4, 5).
In addition, SIX3 was relatively highly expressed in
pituitary gland (Figs. 4, 5). ZBTB20, another TF, was


http://www.qlucore.com

Table 2 List of the top 44 upregulated DEGs, common to all pairwise comparisons between SEGAs and other brain tumors/cortical tubers, with a
median fold change >= 10 and FDR/g-value < 0.05.

SEGAs to TCGA SEGAs to TCGA SEGAs to TCGA SEGAs to SEGAs to
astrocytomas oligodendrogliomas glioblastomas gangliogliomas cortical tubers
Gene ID Fold change Fold change Fold change Fold change Fold change Median
fold change
HCRTR2 253.2 239.6 309.5 154.7 34.9 239.6
SFTA3 168.1 152.6 196.7 203.5 106.3 168.1
TSPANS 141.8 148.4 324.7 240.7 77.1 148.4
KCNKI2 130.3 164.3 195.4 36.0 11.7 130.3
LHCGR 111.7 85.1 102.5 14.7 60.7 85.1
SLN 81.0 125.1 46.2 1082.1 39.3 81.0
HMX3 79.8 70.2 76.5 88.9 17.5 76.5
HMX2 51.1 55.0 58.1 83.5 14.9 55.0
SLCI4A2 39.3 35.1 55.2 53.8 86.2 53.8
FRZB 69.6 48.1 41.1 47.0 11.7 47.0
IRF6 37.2 44.8 71.1 50.9 28.2 44.8
SIX3 30.3 18.1 43.0 71.1 75.5 43.0
TMPRSS2 29.3 25.2 41.9 116.8 57.3 419
TRIM63 35.4 52.2 322 35.8 7.1 354
TRDN 35.3 44.5 63.8 11.0 6.9 353
GPNMB 353 31.2 31.5 71.0 19.9 31.5
LOCI148145 14.9 29.7 38.0 66.4 6.0 29.7
HGD 30.3 25.9 11.1 25.2 4.3 25.2
SLC39A2 24.1 30.5 16.7 30.3 11.0 24.1
FOLRI 18.5 13.5 18.1 162.6 56.1 18.5
SFRP1 18.3 18.6 33.9 18.0 8.1 18.3
ITIHI 18.1 18.3 9.0 26.6 10.0 18.1
TDGFI 17.9 30.8 43.6 15.1 7.7 17.9
LRRN4CL 8.9 22.9 72 39.5 16.2 16.2
LGR5 16.0 18.3 30.7 9.8 10.3 16.0
EOMES 15.7 13.5 16.1 6.2 46.4 15.7
GSTAI 16.1 18.6 139 15.4 8.5 15.4
SFRP4 8.9 11.4 16.6 15.0 31.0 15.0
WISP2 14.8 14.9 19.4 28.8 7.7 14.9
GPRC5A 16.8 11.6 11.7 47.4 14.7 14.7
HKDCI 17.6 11.0 21.5 14.7 10.6 14.7
GALNTS 11.4 14.6 12.6 16.7 61.9 14.6
SYPL2 10.6 15.8 13.7 16.7 8.5 13.7
TNNCI 13.4 14.6 9.3 16.6 8.2 13.4
Kcp 13.2 11.7 10.9 15.5 12.9 12.9
ELSPBPI 12.8 10.9 7.6 14.2 13.2 12.8
VAXI 14.3 11.9 33.6 12.7 5.7 12.7
FGFBP2 9.7 12.6 8.4 81.9 31.4 12.6
IP6K3 8.7 12.5 9.6 13.8 16.4 12.5
TMEM200A 13.9 8.8 25.6 12.5 5.1 12.5
TTC39A 11.9 25.7 12.4 10.6 8.2 11.9
GPRI 20.7 11.1 6.3 18.5 8.6 11.1
F10 10.8 15.1 12.8 6.5 10.4 10.8
HORMAD?2 10.2 10.9 10.0 5.5 43 10.0

Genes highlighted in bold are TFs.

highly expressed in SEGAs compared to all brain tumors Considering other differentially expressed genes other
and cortical tubers, except for gangliogliomas where it  than TFs, HCRTR2 was the most highly expressed gene in
was also highly expressed. ZBTB20 was also much more =~ SEGAs compared to all tumors and normal tissues
highly expressed in SEGAs than all normal tissues (Figs. S5, S6). HCRTR2 is a G-protein coupled receptor
(Figs. S5, S6). that binds the hypothalamic neuropeptides orexin A and
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Fig. 6 Representative images
of IRF6
immunohistochemistry.
Cytoplasmic staining was
observed only in SEGAs (a) and
in the balloon neurons of cortical
tubers (b). No cytoplasmic
immunoreactivity was noted in
subependymomas (c),
ganglioglomas (d), PXAs (e),
oligodendrogliomas (f),
astrocytomas (g), glioblastomas
(h), or in normal infant cortex
(i). Scale bar: 400 um, PXA:
Pleomorphic
xanthoastrocytoma.

orexin B and regulates sleep-wakefulness. Of note, a recent
study reports that hypothalamic orexin and mTOR activa-
tion mediate sleep dysfunction in a mouse model of TSC
[37]. GPNMB (Glycoprotein Nmb) was also a top DEG
between SEGAs and other pathological entities (Table 2
and Figs. S5, S6). We had previously demonstrated that
GPNMB was upregulated in Tsc2 null neuroepithelial cells
[38]. No gene fusion events in any of 16 SEGAs analyzed
by RNA-Seq were identified.

GSEA pathway enrichment analyses

To examine the biological pathways enriched in SEGAs, we
performed Gene Set Enrichment Analysis (GSEA;
https://www.gsea-msigdb.org) using all 190 common DEGs
from above. Ten GO gene sets were enriched for DEGs that
were downregulated in SEGAs (Fig. 3d; top; Table S12);
while 8 were enriched for DEGs that were upregulated in
SEGAs (Fig. 3d; bottom). The downregulated gene sets
were associated with normal brain development, including
GO_synapse and GO_synaptic signaling, indicating that
even by comparison to these other brain tumors, SEGA
have less neuronal differentiation. In contrast, the upregu-
lated gene sets were associated with morphogenesis, cell
surface and WNT protein binding.

Immunohistochemistry confirmation

To confirm that the top highly expressed TF in SEGAs,
identified by RNA-seq, were also highly expressed at protein
level, we performed IHC on SEGAs and multiple other
pediatric and adult gliomas (Figs. 6-8) using commercially
available antibodies. We stained at least 2-5 sections avail-
able per tumor type, including SEGA, cortical tuber, adult
glioblastoma, pleomorphic xanthoastrocytoma (PXA), diffuse
astrocytoma, oligodendroglioma, subependymoma, as well as
normal brain (cortex) (detailed neuropathology evaluation for
each stained marker in Table S13). Positivity was defined as
moderate-to-strong nuclear or cytoplasmic immunoreactivity
in at least 5-25% of cells.

IHC was attempted for each of the top six DE TFs,
including HMX3, HMX2, IRF6, SIX3, EOMES, and VAXI,
as well as ZBTB20. Antibodies for HMX3 and HMX2 failed
to give a reliable signal in SEGA or any other tissue
examined. Both IRF6 and SIX3 showed strong cytoplasmic
immunoreactivity in nearly all SEGAs examined (3 of 3, 4
of 5, respectively), and no appreciable staining in other
tumors types (Figs. 6, 7). IRF6 and SIX3 expression was
also seen in the balloon cells of cortical tubers (2 of
3 samples examined). Both VAX1 and ZBTB20 showed
strong nuclear immunoreactivity in all SEGAs (3 of 3 and 2
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Fig. 7 Representative images
of SIX3
immunohistochemistry. Strong
and diffuse cytoplasmic staining
was predominantly limited to
SEGASs (a) and in the balloon
neurons of cortical tubers (b);
however, occasional examples
of PXA showed positive
staining in large pleomorphic
tumor cells (e). Glioblastomas
exhibited staining in scattered
cells (h). No cytoplasmic
immunoreactivity was noted in
subependymomas (c),
ganglioglomas (d),
oligodendrogliomas (f),
astrocytomas (g), or in normal
infant cortex (i). Scale bar: 400
um, PXA: Pleomorphic
xanthoastrocytoma.

of 2, respectively). VAX1 was highly specific for SEGAs,
with little to no staining in other tumor types/
lesions (Fig. 8), while ZBTB20 showed moderate to high
nuclear staining in all tumors and normal neurons Fig. S7.
IHC for EOMES did not show specificity for SEGAs (data
not shown).

IHC analysis also showed that HCRTR?2, the gene with
highest differential expression, showed cytoplasmic immu-
noreactivity in SEGAs and was not seen in other brain
tumors/tubers apart from gangliogliomas (Fig. S7). CTSK
(cathepsin K), a known marker for kidney angiomyolipoma,
another benign tumor seen in the majority of TSC patients,
showed very strong cytoplasmic staining in SEGAs (5 of 5,
100%). It was also seen in the balloon cells of cortical
tubers (1 of 3, 33%) and in some glioblastoma (1 of 3, 33%)
(Fig. S7). GPNMB showed very high expression in SEGA
and the balloon cells of cortical tubers but was not seen in
normal cortex (Fig. S7).

Unsupervised weighted gene co-expression network
analysis (WGCNA)

We also performed unsupervised weighted gene co-
expression network analysis (WGCNA), based on

pairwise correlations for SEGAs versus TCGA low grade
gliomas, glioblastomas, gangliogliomas, and cortical tubers
in order to define modules (clusters of co-expressed genes)
and intramodular hub genes enriched in SEGAs [39].
WGCNA identified 65 modules of correlating co-expressed
genes, that contained 46—1701 genes (median: 102, average:
231). We then determined a correlation score for each
module to SEGA tumors, and assigned kyg scores to each
gene (Tables S14, S15, and Fig. S8). Genes with higher kyg
scores are considered ‘“hub” genes that may regulate
expression within that module. Module ME65, with 47
genes, had the highest correlation score, 0.84, and showed
the most consistent difference between SEGAs and the
other tumors/cortical tubers. Module ME65 contained 21 of
the 190 (11%) common DEGs, including 4 of the 6 TFs
showing the largest median expression fold-change; HMX3,
HMX2, IRF6, and SIX3. These results suggest that
expression of HMX3, HMX2, IRF6, and SIX3 TFs may be
co-regulated in a synergistic manner, and that those genes
may be master TFs for SEGA, and function as transcrip-
tional drivers of SEGA development. Overall, the 190
DEGs were found in 25 different modules, with module
M65, M66, and M85 containing the highest number of co-
expressed DEGs (21, 31, 39 genes, respectively).



Fig. 8 Representative images e

of VAX1 BRI Ol TS
immunohistochemistry. . iiF
Nuclear staining was observed
in all SEGAs (a) and focal »
staining was seen in abnormal
clusters of neurons, consistent
with balloon neurons in cortical
tubers (b). Occasional examples
of subependymoma displayed
focal nuclear positivity (c), and a
single PXA showed positive
staining in large pleomorphic
tumor cells (e). No nuclear
immunoreactivity was noted in
ganglioglomas (d),
oligodendrogliomas (f),
astrocytomas (g), glioblastomas
(h), or in normal infant cortex
(i). Scale bar: 400 um, PXA: -
Pleomorphic D
xanthoastrocytoma.

Discussion

The present study reports multiplatform genomic and
expression analyses in a large series of SEGA tumors,
with detailed comparison to other brain tumors, other
solid tumors, and multiple normal tissues. Exome
sequence analysis of 21 matched tumor-normal pairs
revealed that the mutational landscape of SEGAs is
characterized by consistent biallelic inactivation of either
TSCI or TSC2. In contrast, other somatic mutations
appear to be random occurrences, without any duplicate
events in this dataset, and very likely do not contribute to
SEGA development. The frequency of other somatic
mutations (0.80 mutation/Mb) is lower than, but similar
to, that seen in TSC-related kidney angiomyolipoma
(range 0-12 mutations, 2.1 mutations/Mb; p =0.016,
unpaired Mann—Whitney #-test), as previously reported
[31]. CN-LOH was the most common second hit (81%)
event in this cohort of SEGAs, similar to our previous
reports on both SEGAs and angiomyolipomas [6, 7, 31].
This extremely low somatic mutation rate in SEGAs is
similar to a small set of pediatric brain tumors, including
atypical teratoid/rhabdoid tumors, pituitary adenoma,
and pediatric medulloblastoma [40-44]. Our exome

results strongly suggest that biallelic loss of TSCI or
TSC2 1is all that is required genetically for SEGA
development.

RNA-seq analyses showed that SEGAs have a unique
expression profile compared to other brain tumors, having
somewhat more similarity to TCGA oligodendrogliomas
and cortical tubers, and less to TCGA astrocytomas
and gangliogliomas. Seven TFs, HMX3, HMX2, IRF6,
SIX3, EOMES, VAXI, and ZBTB20, were highly and
relatively uniquely expressed in SEGAs. Little is known
about the function of several of these, including potential
roles in neurodevelopment. HMX3 and HMX2 are related
NKL homeobox transcription factors involved in specifi-
cation of neuronal cell types and organ development
[45, 46]. SIX3 is a sine oculis homeobox TF with a role in
eye development, that regulates the proliferation and
differentiation of neural progenitor cells through activat-
ing transcription of CCNDI and CCND?2 [47]. ZBTB20 is
also highly expressed uniquely in SEGAs, and is a tran-
scriptional repressor with roles in neurogenesis, glucose
homeostasis, and postnatal growth [48]. IRF6 (Interferon
regulatory factor 6) plays a role in regulating mammary
epithelial cell proliferation, while specifically expressed in
SEGAs in comparison to other brain tumors but is



expressed in other cancers and normal tissues [49]. These
top genes have been reported to be epigenetically regu-
lated bearing histone modifications: H3K27 tri-
methylation (H3K27me3) mark in brain for HMX2,
HMX3, IRF6;, H3K4me2 and H3K27me3 in neural pre-
cursor cells (NPC) for HMX2, HMX3, and VAXI [50].

VAXI1, SIX3, and IRF6 were all shown to be relatively
highly and specifically expressed in SEGAs, suggesting that
they may be useful to distinguish SEGAs from histologic
mimics, including other brain tumors. However, our efforts
to confirm the high and specific expression of these TFs in
SEGAs were hampered by the failure of commercially
available antibodies against HMX?2 and HMX3 in IHC, and
failure of attempts at RNA in-situ hybridization for HMX3.

Further studies are warranted to assess the functional
importance of each of these TFs in SEGA development.
Nonetheless, the key TFs HMX2, HMX3, VAX1, SIX3,
and IRF6 may be considered as potential targets for the
treatment of SEGAs, independent of, or in combination
with mTORCI1 inhibitors.

In conclusion, SEGAs have an extremely low somatic
mutation burden, apart from TSCI1/TSC2, similar to other
pediatric brain tumors. Biallelic loss of either T7SCI or TSC2
occurs most commonly due to co-occurrence of a germline
small mutation and CN-LOH as a second event, fitting the
classic Knudson two hit mechanism. Several TFs, identified
by RNA-seq analyses, are highly and relatively uniquely
expressed in SEGAs. We consider that these TFs likely
reflect the unique developmental state of the neuroepithelial
cell in which biallelic loss of TSCI/TSC2 gives rise to
SEGAs. They may also be transcriptional drivers of SEGA
growth whose expression is required.

Data availability

Access to data which are not available within the article and
Supplementary material, can be provided by the authors
upon request (direct contact to KG or DJK).

Acknowledgements The authors thank all subjects who participated in
this study; the clinicians who referred and evaluated the patients and
the neurosurgeons who performed the surgical resections; as well as
Karthik V. Karnik and Edward R. Kwiatkowski for their work on
customized code for MPS analysis, as well as Yana Stackpole for
assistance with Qlucore analysis; Stichting Kinderen Kankervrij;
Stichting AMC Foundation; Stichting TSC Fonds (EA, AB).

Funding This work was supported by the Engles Family Fund for
Research in TSC and LAM.

Author contributions KG: conceptualized the study, performed
experiments, analyzed and interpreted high throughput data, wrote and
submitted the paper for publication. ZZ, JK, KDW, MET, DM, JSP,
ZH, LT, HL, GG, and MSL: executed experiments or/and performed
high throughput analyses: AB, WP, BG, MN, MM, and EA: con-
tributed material; SA: selected a subset of the pediatric cases,

evaluated their histology, and provided biospecimens. KK, SJ, MR,
EAT, MM, HL, OD, KLL, DWE, MS, and EA: evaluated the patients/
biospecimens or/and provided clinical data. DMM: provided biospe-
cimens, performed pathology analysis of the tumors and contributed to
experimental design; DJK: conceptualized and supervised the study,
reviewed and interpreted data and contribute to paper preparation. All
authors read and commented on the paper.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’'s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-
Kowalik J, et al. Pathogenesis of tuberous sclerosis subependymal
giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads
to mTOR activation. J Neuropathol Exp Neurol. 2004;63:1236-42.

2. Kotulska K, Borkowska J, Roszkowski M, Mandera M, Dasz-
kiewicz P, Drabik K, et al. Surgical treatment of subependymal
giant cell astrocytoma in tuberous sclerosis complex patients.
Pediatr Neurol. 2014;50:307-12.

3. Henske EP, J6zwiak S, Kingswood JC, Sampson JR, Thiele EA.
Tuberous sclerosis complex. Nat Rev Dis Prim. 2016;2:16035.

4. Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic
etiologies, diagnosis, and treatment of tuberous sclerosis complex.
Annu Rev Genomics Hum Genet. 2019;20:217-40.

5. Bongaarts A, Giannikou K, Reinten RJ, Anink JJ, Mills JD, Jansen
FE, et al. Subependymal giant cell astrocytomas in Tuberous
sclerosis complex have consistent TSC1/TSC2 biallelic inactivation,
and no BRAF mutations. Oncotarget. 2017;8:95516-29.

6. Martin KR, Zhou W, Bowman MJ, Shih J, Au KS, Dittenhafer-
Reed KE, et al. The genomic landscape of tuberous sclerosis
complex. Nat Commun 2017;8:15816. https://doi.org/10.1038/
ncomms15816.

7. Lee D, Cho YH, Kang SY, Yoon N, Sung CO, Suh YL. BRAF
V600E mutations are frequent in dysembryoplastic neuroepithelial
tumors and subependymal giant cell astrocytomas. J Surg Oncol.
2015;111:359-64.

8. Debiec-Rychter M, Jesionek-Kupnicka D, Zakrzewski K, Liberski
PP. Cytogenetic changes in two cases of subependymal giant-cell
astrocytoma. Cancer Genet Cytogenet. 1999;109:29-33.

9. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M,
Kuperman R, et al. Everolimus for subependymal giant cell
astrocytoma in patients with tuberous sclerosis complex: 2-year
open-label extension of the randomised EXIST-1 study. Lancet
Oncol. 2014;15:1513-2150.

10. Franz DN, Agricola K, Mays M, Tudor C, Care MM, Holland-
Bouley K, et al. Everolimus for subependymal giant cell astro-
cytoma: 5-year final analysis. Ann Neurol. 2015;78:929-38.

11. Fogarasi A, De Waele L, Bartalini G, Jozwiak S, Laforgia N,
Verhelst H, et al. EFFECTS: an expanded access program of
everolimus for patients with subependymal giant cell astrocytoma
associated with tuberous sclerosis complex. BMC Neurol.
2016;16:126.

12. Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J,
Kucharska J, Grajkowska W, et al. Novel proteins regulated by
mTOR in subependymal giant cell astrocytomas of patients with
tuberous sclerosis complex and new therapeutic implications. Am
J Pathol. 2010;176:1878-90.


https://doi.org/10.1038/ncomms15816
https://doi.org/10.1038/ncomms15816

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Bongaarts A, van Scheppingen J, Korotkov A, Mijnsbergen C,
Anink JJ, Jansen FE, et al. The coding and non-coding tran-
scriptional landscape of subependymal giant cell astrocytomas.
Brain. 2020;143:131-49.

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-
Branger D, Cavenee WK, et al. The 2016 World Health Organi-
zation classification of tumors of the central nervous system: a
summary. Acta Neuropathol. 2016;131:803-20.

Wen PY, Huse JT. 2016 World Health Organization classification
of central nervous system tumors. Contin (Minneap Minn).
2017;23:1531-47.

Diamandis P, Aldape K. World Health Organization 2016 clas-
sification of central nervous system tumors. Neurol Clin.
2018;36:439-47.

Northrup H, Krueger DA, International Tuberous Sclerosis
Complex Consensus Group. Tuberous sclerosis complex diag-
nostic criteria update: recommendations of the 2012 International
Tuberous Sclerosis Complex Consensus Conference. Pediatr
Neurol. 2013;49:243-54.

. Kim W, Giannikou K, Dreier JR, Lee S, Tyburczy ME, Silverman

EK, et al. A genome-wide association study implicates NR2F2 in
lymphangioleiomyomatosis pathogenesis. Eur Respir J. 2019;53
(6):1900329. https://doi.org/10.1183/13993003.00329-2019. pii

. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM,

Brockman W, et al. Solution hybrid selection with ultra-long
oligonucleotides for massively parallel targeted sequencing. Nat
Biotechnol. 2009;27:182-9.

Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, et al. A
scalable, fully automated process for construction of sequence-ready
human exome targeted capture libraries. Genome Biol. 2011;12:R1.
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T,
et al. Absolute quantification of somatic DNA alterations in
human cancer. Nat Biotechnol. 2012;30:413-21.

Tyburczy ME, Dies KA, Glass J, Camposano S, Chekaluk Y,
Thorner AR, et al. Mosaic and intronic mutations in TSC1/TSC2
explain the majority of TSC patients with no mutation identified
by conventional testing. PLoS Genet. 2015;11:e1005637.
Giannikou K, Lasseter KD, Grevelink JM, Tyburczy ME, Dies
KA, Zhu Z, et al. Low-level mosaicism in tuberous sclerosis
complex: prevalence, clinical features, and risk of disease trans-
mission. Genet Med. 2019;21:2639-43.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S,
et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics.
2013;29:15-21.

Comnwell M, Vangala M, Taing L, Hebert Z, Koster J, Li B, et al.
VIPER: visualization pipeline for RNA-seq, a snakemake work-
flow for efficient and complete RNA-seq analysis. BMC Bioin-
forma. 2018;19:135.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al.
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc,
2012;7:562-78.

Li B, Dewey CN. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioin-
formatics. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.
Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD,
et al. Genetic alterations in uncommon low-grade neuroepithelial
tumors: BRAF, FGFR1, and MYB mutations occur at high fre-
quency and align with morphology. Acta Neuropathol.
2016;131:833-45.

Ceccarelli M, Barthel FP, Malta TM, Sabetot TS, Salama SR,
Murray BA, et al. Molecular profiling reveals biologically discrete
subsets and pathways of progression in diffuse glioma. Cell
2016;164:550-63.

Tsurubuchi T, Nakano Y, Hirato J, Yoshida A, Muroi A, Saka-
moto N, et al. Subependymal giant cell astrocytoma harboring a

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

PRRC2B-ALK fusion: a case report. Pediatr Blood Cancer.
2019;66:€27995. https://doi.org/10.1002/pbc.27995.

Giannikou K, Malinowska IA, Pugh TJ, Yan R, Tseng YY, Oh C,
et al. Whole exome sequencing identifies TSC1/TSC2 biallelic
loss as the primary and sufficient driver event for renal angio-
myolipoma development. PLoS Genet. 2016;12:¢1006242. 5.
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D,
Weerasinghe A, et al. Comprehensive characterization of cancer
driver genes and mutations. Cell 2018;174:1034-5.

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K,
Sivachenko A, et al. Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature 2013;499:214-8.
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G,
Cherniack AD, et al. Comprehensive molecular characterization of
muscle-invasive bladder. Cancer Cell. 2017;171:540-56.

Love MI, Huber W, Anders S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014;15:550.

Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al.
The Genotype-Tissue Expression (GTEx) project. Nat Genet.
2013;45:580-5.

Zhang B, Guo D, Han L, Rensing N, Satoh A, Wong M. Hypo-
thalamic orexin and mechanistic target of rapamycin activation
mediate sleep dysfunction in a mouse model of Tuberous sclerosis
complex. Neurobiol Dis 2020;134:104615.

Onda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould BE,
et al. Tsc2 null murine neuroepithelial cells are a model for human
tuber giant cells, and show activation of an mTOR pathway. Mol
Cell Neurosci. 2002;21:561-74.

Langfelder P, Horvath S. WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics. 2008;9:559.
https://doi.org/10.1186/1471-2105-9-559.

Bettegowda C, Agrawal N, Jiao Y, Wang Y, Wood LD, Rodri-
guez FJ, et al. Exomic sequencing of four rare central nervous
system tumor types. Oncotarget. 2013;4:572-83.

Cancer Genome Atlas Research Network. Comprehensive geno-
mic characterization defines human glioblastoma genes and core
pathways. Nature. 2008;455:1061-8.

Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E,
Onodera C, et al. Targeted next-generation sequencing of pediatric
neuro-oncology patients improves diagnosis, identifies pathogenic
germline mutations, and directs targeted therapy. Neuro Oncol.
2017;19:699-709.

Correa DD, Satagopan J, Martin A, Braun E, Kryza-Lacombe M,
Cheung K, et al. Genetic variants and cognitive functions in
patients with brain tumors. Neuro Oncol. 2019;21:1297-309.
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM,
Wiemels JL. Germline genetic landscape of pediatric central
nervous system tumors. Neuro Oncol. 2019;21:1376-88.

Feng Y, Xu Q. Pivotal role of hmx2 and hmx3 in zebrafish inner
ear and lateral line development. Dev Biol. 2010;339:507-18.
Wang W, Grimmer JF, Van De Water TR, Lufkin T. Hmx2 and
Hmx3 homeobox genes direct development of the murine inner
ear and hypothalamus and can be functionally replaced by Dro-
sophila Hmx. Dev Cell. 2004;7:439-53.

Yu Z, Sun Y, She X, Wang Z, Chen S, Deng Z, et al. SIX3, a
tumor suppressor, inhibits astrocytoma tumorigenesis by tran-
scriptional repression of AURKA/B. J Hematol Oncol.
2017;10:115. https://doi.org/10.1186/s13045-017-0483-2.

Xie Z, Ma X, Ji W, Zhou G, Lu Y, Xiang Z, et al. Zbtb20 is
essential for the specification of CAl field identity in the devel-
oping hippocampus. Proc Natl Acad Sci USA. 2010;10:6510-5.
Guo XM, Chen B, Lv JM, Lei Q, Pan YJ, Yang Q. Knockdown of
IRF6 attenuates hydrogen dioxide-induced oxidative stress via inhi-
biting mitochondrial dysfunction in HT22 cells. Cell Mol Neurobiol.
2016;36:1077-86. https://doi.org/10.1007/s10571-015-0301-8.


https://doi.org/10.1183/13993003.00329-2019
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1002/pbc.27995
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/s13045-017-0483-2
https://doi.org/10.1007/s10571-015-0301-8

50. Kozlenkov A, Li J, Apontes P, Hurd Y, Byne WM, Koonin EV,

et al. A unique role for DNA (hydroxy)methylation in epigenetic

Affiliations

regulation of human inhibitory neurons. Sci Adv. 2018;4:
eaau6190. https://doi.org/10.1126/sciadv.aau6190. 26.

Krinio Giannikou'? - Zachary Zhu' - Jaegil Kim? - Kellen D. Winden® - Magdalena E. Tyburczy' - David Marron* -
Joel S. Parker ®* - Zachary Hebert®? - Anika Bongaarts® - Len Taing’ - Henry W. Long’ - William V. Pisano® -

Sanda Alexandrescu® - Brianna Godlewski® - Mark Nellist'® - Katarzyna Kotulska'' - Sergiusz Jozwiak

11,

Marcin Roszkowski'? - Marek Mandera®'® - Elizabeth A. Thiele' - Hart Lidov® - Gad Getz? - Orrin Devinsky'® -

Michael S. Lawrence'® - Keith L. Ligon® - David W. Ellison'” - Mustafa Sahin (? - Eleonora Aronica
David M. Meredith

1

9. David J. Kwiatkowski'?

Cancer Genetics Laboratory, Division of Pulmonary and Critical
Care Medicine, Brigham and Women’s Hospital and Harvard
Medical School, Boston, MA, USA

Broad Institute of MIT and Harvard, Cancer Genome Program,
Cambridge, MA, USA

Department of Neurology, Boston Children’s Hospital, Harvard
Medical School, Boston, MA, USA

Lineberger Comprehensive Cancer Center, The University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA

Molecular Biology Core Facility, Dana Farber Cancer Institute,
Boston, MA, USA

Amsterdam UMC, University of Amsterdam, Department of
(Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, the
Netherlands

Center for Functional Cancer Epigenetics, Department of Medical
Oncology, Dana-Farber Cancer Institute and Harvard Medical
School, Boston, MA, USA

Department of Oncologic Pathology, Dana-Farber Cancer
Institute, Boston, MA, USA

Department of Pathology, Boston Children’s Hospital, Harvard
Medical School, Boston, MA, USA

618 ,

Department of Clinical Genetics, Erasmus Medical Centre,
Rotterdam, The Netherlands

Department of Child Neurology, Medical University of Warsaw,
Warsaw, Poland

Department of Neurosurgery, The Children’s Memorial Health
Institute, Warsaw, Poland

Department of Pediatric Neurosurgery, Medical University of
Silesia, Katowice, Poland

Department of Neurology, Massachusetts General Hospital,
Boston, MA, USA

Department of Neurology, New York University School of
Medicine, 223 E 34 Street, New York, NY, USA

Broad Institute of MIT and Harvard, Massachusetts General
Hospital Cancer Center, Department of Pathology, Harvard
Medical School, Charlestown, MA, USA

Department of Pathology, St. Jude Children’s Research Hospital,
Memphis, TN, USA

Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The
Netherlands

Department of Pathology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA, USA


https://doi.org/10.1126/sciadv.aau6190
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0003-2080-6901
http://orcid.org/0000-0001-9401-2464
http://orcid.org/0000-0001-9401-2464
http://orcid.org/0000-0001-9401-2464
http://orcid.org/0000-0001-9401-2464
http://orcid.org/0000-0001-9401-2464
http://orcid.org/0000-0003-3350-6326
http://orcid.org/0000-0003-3350-6326
http://orcid.org/0000-0003-3350-6326
http://orcid.org/0000-0003-3350-6326
http://orcid.org/0000-0003-3350-6326
http://orcid.org/0000-0003-2141-7932
http://orcid.org/0000-0003-2141-7932
http://orcid.org/0000-0003-2141-7932
http://orcid.org/0000-0003-2141-7932
http://orcid.org/0000-0003-2141-7932
http://orcid.org/0000-0001-7044-2953
http://orcid.org/0000-0001-7044-2953
http://orcid.org/0000-0001-7044-2953
http://orcid.org/0000-0001-7044-2953
http://orcid.org/0000-0001-7044-2953
http://orcid.org/0000-0002-7054-8624
http://orcid.org/0000-0002-7054-8624
http://orcid.org/0000-0002-7054-8624
http://orcid.org/0000-0002-7054-8624
http://orcid.org/0000-0002-7054-8624

	Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile
	Abstract
	Introduction
	Materials and methods
	Patient recruitment and tumor collection
	Histopathology studies
	Exome sequencing methods
	Pre-processing and bioinformatics analysis of MPS�data
	Whole transcriptome RNA sequencing
	Statistical analysis

	Results
	Clinical and routine diagnostic studies
	TSC1/TSC2 mutation analysis of SEGAs
	Exome sequence analysis
	Gene expression RNA-seq analyses
	GSEA pathway enrichment analyses
	Immunohistochemistry confirmation
	Unsupervised weighted gene co-expression network analysis (WGCNA)

	Discussion
	Supplementary information
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A7




