1,102 research outputs found
Condensation energy in strongly coupled superconductors
We consider the condensation energy in superconductors where the pairing is
electronic in origin and is mediated by a collective bosonic mode.
We use magnetically-mediated superconductivity as an example, and show that
for large spin-fermion couplings, the physics is qualitatively different from
the BCS theory as the condensation energy results from the feedback on spin
excitations, while the electronic contribution to the condensation energy is
positive due to an ``undressing'' feedback on the fermions. The same feedback
effect accounts for the gain of the kinetic energy at strong couplings.Comment: 4 pages, revtex 4, 3 eps figure
Mixed-State Quasiparticle Spectrum for d-wave Superconductors
Controversy concerning the pairing symmetry of high- materials has
motivated an interest in those measurable properties of superconductors for
which qualitative differences exist between the s-wave and d-wave cases. We
report on a comparison between the microscopic electronic properties of d-wave
and s-wave superconductors in the mixed state. Our study is based on
self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes
equations for phenomenological BCS models which have s-wave and d-wave
condensates in the absence of a magnetic field. We discuss differences between
the s-wave and the d-wave local density-of-states, both near and away from
vortex cores. Experimental implications for both scanning-tunneling-microscopy
measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques
Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor
We analyze the effects of an electron-phonon interaction on the one-electron
spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case
of an Einstein phonon mode with various momentum-dependent electron-phonon
couplings and compare the structure produced in A(k,omega) with that obtained
from coupling to the magnetic pi-resonant mode. We find that if the strength of
the interactions are adjusted to give the same renormalization at the nodal
point, the differences in A(k,omega) are generally small but possibly
observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available
upon request
Cost-effectiveness of insulin pumps compared with multiple daily injections, both provided with structured education, for adults with type 1 diabetes:a health economic analysis of the Relative Effectiveness of Pumps over Structured Education (REPOSE) randomised controlled trial
Objectives
To assess the long-term cost-effectiveness of insulin pumps and Dose Adjustment for Normal Eating (pumps+DAFNE) compared with multiple daily insulin injections and DAFNE (MDI+DAFNE) for adults with type 1 diabetes mellitus (T1DM) in the UK.
Methods
We undertook a cost–utility analysis using the Sheffield Type 1 Diabetes Policy Model and data from the Relative Effectiveness of Pumps over Structured Education (REPOSE) trial to estimate the lifetime incidence of diabetic complications, intervention-based resource use and associated effects on costs and quality-adjusted life years (QALYs). All economic analyses took a National Health Service and personal social services perspective and discounted costs and QALYs at 3.5% per annum. A probabilistic sensitivity analysis was performed on the base case. Further uncertainties in the cost of pumps and the evidence used to inform the model were explored using scenario analyses.
Setting
Eight diabetes centres in England and Scotland.
Participants
Adults with T1DM who were eligible to receive a structured education course and did not have a strong clinical indication or a preference for a pump.
Intervention
Pumps+DAFNE.
Comparator
MDI+DAFNE.
Main outcome measures
Incremental costs, incremental QALYs gained and incremental cost-effectiveness ratios (ICERs).
Results
Compared with MDI+DAFNE, pumps+DAFNE was associated with an incremental discounted lifetime cost of +£18 853 (95% CI £6175 to £31 645) and a gain in discounted lifetime QALYs of +0.13 (95% CI -0.70 to +0.96). The base case mean ICER was £142 195 per QALY gained. The probability of pump+DAFNE being cost-effective using a cost-effectiveness threshold of £20 000 per QALY gained was 14.0%. All scenario and subgroup analyses examined indicated that the ICER was unlikely to fall below £30 000 per QALY gained.
Conclusions
Our analysis of the REPOSE data suggests that routine use of pumps in adults without an immediate clinical need for a pump, as identified by National Institute for Health and Care Excellence, would not be cost-effective.
Trial registration number
ISRCTN61215213
Pairing symmetry and long range pair potential in a weak coupling theory of superconductivity
We study the superconducting phase with two component order parameter
scenario, such as, , where . We show, that in absence of orthorhombocity, the usual
does not mix with usual symmetry gap in an anisotropic band
structure. But the symmetry does mix with the usual d-wave for . The d-wave symmetry with higher harmonics present in it also mixes with
higher order extended wave symmetry. The required pair potential to obtain
higher anisotropic and extended s-wave symmetries, is derived by
considering longer ranged two-body attractive potential in the spirit of tight
binding lattice. We demonstrate that the dominant pairing symmetry changes
drastically from to like as the attractive pair potential is obtained
from longer ranged interaction. More specifically, a typical length scale of
interaction , which could be even/odd multiples of lattice spacing leads
to predominant wave symmetry. The role of long range interaction on
pairing symmetry has further been emphasized by studying the typical interplay
in the temperature dependencies of these higher order and wave pairing
symmetries.Comment: Revtex 8 pages, 7 figures embeded in the text, To appear in PR
Structural, Electronic, and Magnetic Properties of MnO
We calculate the structural, electronic, and magnetic properties of MnO from
first principles, using the full-potential linearized augmented planewave
method, with both local-density and generalized-gradient approximations to
exchange and correlation. We find the ground state to be of rhombohedrally
distorted B1 structure with compression along the [111] direction,
antiferromagnetic with type-II ordering, and insulating, consistent with
experiment. We show that the distortion can be understood in terms of a
Heisenberg model with distance dependent nearest-neighbor and
next-nearest-neighbor couplings determined from first principles. Finally, we
show that magnetic ordering can induce significant charge anisotropy, and give
predictions for electric field gradients in the ground-state rhombohedrally
distorted structure.Comment: Submitted to Physical Review B. Replaced: regenerated figures to
resolve font problems in automatically generated pd
Linked Markov sources: Modeling outcome-dependent social processes
Many social processes are adaptive in the sense that the process changes as a result of previous outcomes. Data on such processes may come in the form of categorical time series. First, the authors propose a class of Markov Source models that embody such adaptation. Second, the authors discuss new methods to evaluate the fit of such models. Third, the authors apply these models and methods to data on a social process that is a preeminent example of an adaptive process: (encoded) conversation as arises in structured interviews. © 2007 Sage Publications
The composition and role of convergent technological repertoires in audiovisual media consumption
This mixed-method research focuses on the growing appropriation of multiple screen devices for audiovisual media consumption. Based on survey measures, we distinguish three patterns: (a) maintaining the status quo, by mainly drawing upon television, (b) broadening up the repertoire, by extending television with computers and mobile devices, or (c) even replacing television by a computer. Next, we draw upon insights from niche theory, rationalising media choices in terms of competing gratifications. This perspective is however too one-sided, as our results indicate that habit is a much stronger explanatory variable, especially when a broad range of devices are appropriated. In a follow-up qualitative study, based on Q-methodology, we found that the orientations towards what people seek in audiovisual technologies are only mildly contingent with specific technology appropriation. This problematises the very substance of niches in the audiovisual: as technologies are capable of the same benefits, their discriminating power is declining. Hence, in future applications of niche theory, gratifications and habits of communication modes (what people do with media technologies) should be taken into account, rather than media as tied to a specific technology. Niche theory's core remains, but its applications should be updated to theoretical insights matching the evolving media environment
Use of the Generalized Gradient Approximation in Pseudopotential Calculations of Solids
We present a study of the equilibrium properties of -bonded solids within
the pseudopotential approach, employing recently proposed generalized gradient
approximation (GGA) exchange correlation functionals. We analyze the effects of
the gradient corrections on the behavior of the pseudopotentials and discuss
possible approaches for constructing pseudopotentials self-consistently in the
context of gradient corrected functionals. The calculated equilibrium
properties of solids using the GGA functionals are compared to the ones
obtained through the local density approximation (LDA) and to experimental
data. A significant improvement over the LDA results is achieved with the use
of the GGA functionals for cohesive energies. For the lattice constant, the
same accuracy as in LDA can be obtained when the nonlinear coupling between
core and valence electrons introduced by the exchange correlation functionals
is properly taken into account. However, GGA functionals give bulk moduli that
are too small compared to experiment.Comment: 15 pages, latex, no figure
Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts
Ionization fronts, the sharp radiation fronts behind which H/He ionizing
photons from massive stars and galaxies propagate through space, were
ubiquitous in the universe from its earliest times. The cosmic dark ages ended
with the formation of the first primeval stars and galaxies a few hundred Myr
after the Big Bang. Numerical simulations suggest that stars in this era were
very massive, 25 - 500 solar masses, with H II regions of up to 30,000
light-years in diameter. We present three-dimensional radiation hydrodynamical
calculations that reveal that the I-fronts of the first stars and galaxies were
prone to violent instabilities, enhancing the escape of UV photons into the
early intergalactic medium (IGM) and forming clumpy media in which supernovae
later exploded. The enrichment of such clumps with metals by the first
supernovae may have led to the prompt formation of a second generation of
low-mass stars, profoundly transforming the nature of the first protogalaxies.
Cosmological radiation hydrodynamics is unique because ionizing photons coupled
strongly to both gas flows and primordial chemistry at early epochs,
introducing a hierarchy of disparate characteristic timescales whose relative
magnitudes can vary greatly throughout a given calculation. We describe the
adaptive multistep integration scheme we have developed for the self-consistent
transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech,
March 15 - 18, 201
- …