362 research outputs found

    Application of XMR 2D-3D Registration to Cardiac Interventional Guidance

    Full text link

    Modelling mucociliary clearance

    Get PDF
    Mathematical modelling of the fluid mechanics of mucociliary clearance (MCC) is reviewed and future challenges for researchers are discussed. The morphology of the bronchial and tracheal airway surface liquid (ASL) and ciliated epithelium are briefly introduced. The cilia beat cycle, beat frequency and metachronal coordination are described, along with the rheology of the mucous layer. Theoretical modelling of MCC from the late 1960s onwards is reviewed, and distinctions between ‘phenomenological’, ‘slender body theory’ and recent ‘fluid–structure interaction’ models are explained.\ud \ud The ASL consists of two layers, an overlying mucous layer and underlying watery periciliary layer (PCL) which bathes the cilia. Previous models have predicted very little transport of fluid in the PCL compared with the mucous layer. Fluorescent tracer transport experiments on human airway cultures conducted by Matsui et al. [Matsui, H., Randell, S.H., Peretti, S.W., Davis, C.W., Boucher, R.C., 1998. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102 (6), 1125–1131] apparently showed equal transport in both the PCL and mucous layer. Recent attempts to resolve this discrepancy by the present authors are reviewed, along with associated modelling findings. These findings have suggested new insights into the interaction of cilia with mucus due to pressure gradients associated with the flat PCL/mucus interface. This phenomenon complements previously known mechanisms for ciliary propulsion. Modelling results are related to clinical findings, in particular the increased MCC observed in patients with pseudohypoaldosteronism. Recent important advances by several groups in modelling the fluid–structure interaction by which the cilia movement and fluid transport emerge from specification of internal mechanics, viscous and elastic forces are reviewed. Finally, we discuss the limitations of existing work, and the challenges for the next generation of models, which may provide further insight into this complex and vital system

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow

    Raman spectroscopy of a single ion coupled to a high-finesse cavity

    Full text link
    We describe an ion-based cavity-QED system in which the internal dynamics of an atom is coupled to the modes of an optical cavity by vacuum-stimulated Raman transitions. We observe Raman spectra for different excitation polarizations and find quantitative agreement with theoretical simulations. Residual motion of the ion introduces motional sidebands in the Raman spectrum and leads to ion delocalization. The system offers prospects for cavity-assisted resolved-sideband ground-state cooling and coherent manipulation of ions and photons.Comment: 8 pages, 6 figure

    Algebraic Systems and Pushdown Automata

    Full text link
    The theory of algebraic power series in noncommuting variables, as we un-derstand it today, was initiated in [2] and developed in its early stages by the French school. The main motivation was the interconnection with context-free grammars: the defining equations were made to correspond to context-fre

    A shooting algorithm for problems with singular arcs

    Get PDF
    In this article we propose a shooting algorithm for a class of optimal control problems for which all control variables appear linearly. The shooting system has, in the general case, more equations than unknowns and the Gauss-Newton method is used to compute a zero of the shooting function. This shooting algorithm is locally quadratically convergent if the derivative of the shooting function is one-to-one at the solution. The main result of this paper is to show that the latter holds whenever a sufficient condition for weak optimality is satisfied. We note that this condition is very close to a second order necessary condition. For the case when the shooting system can be reduced to one having the same number of unknowns and equations (square system) we prove that the mentioned sufficient condition guarantees the stability of the optimal solution under small perturbations and the invertibility of the Jacobian matrix of the shooting function associated to the perturbed problem. We present numerical tests that validate our method.Comment: No. RR-7763 (2011); Journal of Optimization, Theory and Applications, published as 'Online first', January 201

    Segregation to and structure of [001] twist grain boundaries in Cu---Ni alloys

    Full text link
    The segregation, thermodynamic, and structural properties of [001] twist boundaries in Cu---Ni alloys have been examined within a wide range of misorientations and temperatures. Cu always segregates to the boundary. The concentration of the first layer adjacent to the boundary increases monotonically with misorientation and no obvious cusps are observed. All other thermodynamic properties vary smoothly with the misorientation, with the exception of the vibrational entropy of the boundaries without segregation. The unsegregated vibrational entropy shows a large peak at the misorientation corresponding to the [Sigma]17 boundary and two minima around the [Sigma]13 and [Sigma]5 boundary orientations. The concentration distribution within the plane of the grain boundaries can be described by the same structural unit model established for [001] twist boundaries in pure materials. Regions of large tensile stress show greater segregation than do regions of compressive stress. Regions of large shear stress tend to show reduced segragation compared with regions of small shear stress.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30624/1/0000265.pd

    Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance

    Get PDF
    Much of the human resource management literature has demonstrated the impact of high performance work systems (HPWS) on organizational performance. A new generation of studies is emerging in this literature that recommends the inclusion of mediating variables between HPWS and organizational performance. The increasing rate of dynamism in competitive environments suggests that measures of employee adaptability should be included as a mechanism that may explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the study’s results confirm that HPWS influences performance through its impact on the firm’s human resource (HR) flexibility

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF
    • …
    corecore