1,203 research outputs found

    Response Functions Improving Performance in Analog Attractor Neural Networks

    Full text link
    In the context of attractor neural networks, we study how the equilibrium analog neural activities, reached by the network dynamics during memory retrieval, may improve storage performance by reducing the interferences between the recalled pattern and the other stored ones. We determine a simple dynamics that stabilizes network states which are highly correlated with the retrieved pattern, for a number of stored memories that does not exceed α⋆N\alpha_{\star} N, where α⋆∈[0,0.41]\alpha_{\star}\in[0,0.41] depends on the global activity level in the network and NN is the number of neurons.Comment: 13 pages (with figures), LaTex (RevTex), to appear on Phys.Rev.E (RC

    Digital sculpture : technical and aesthetic considerations applicable to current input and output modes of additive fabricated sculpture

    Get PDF
    Published ArticleThis article examines the synergy between aesthetic and technical issues surrounding current input and output modes applicable to digital sculpture built by means of additive fabrication technologies. The scope is limited to select sculptural aspects that either transcend, question or fall short when measured against traditional manufacturing and aesthetic modes. Presented are a range of technical as well as aesthetic aspects that have impacted on this ''new form'' of sculpture delivery. It is indicated that irrespective of current strengths and weaknesses, for the evolving sculptor, an interactive creative partnership between technologies equally positions this ''new form'' of sculpture delivery as a leading role player towards defining a new digital aesthetic

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure

    Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder

    Get PDF
    The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermodynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed in some recent papers, is inconsistent with the general background of laser speckle theory. Then we propose a possible experimental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation function. Using a Fourier transform of that function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is responsible for the normalfluid component

    Dynamic generation of maximally entangled photon multiplets by adiabatic passage

    Get PDF
    The adiabatic passage scheme for quantum state synthesis, in which atomic Zeeman coherences are mapped to photon states in an optical cavity, is extended to the general case of two degenerate cavity modes with orthogonal polarization. Analytical calculations of the dressed-state structure and Monte Carlo wave-function simulations of the system dynamics show that, for a suitably chosen cavity detuning, it is possible to generate states of photon multiplets that are maximally entangled in polarization. These states display nonclassical correlations of the type described by Greenberger, Horne, and Zeilinger (GHZ). An experimental scheme to realize a GHZ measurement using coincidence detection of the photons escaping from the cavity is proposed. The correlations are found to originate in the dynamics of the adiabatic passage and persist even if cavity decay and GHZ state synthesis compete on the same time scale. Beyond entangled field states, it is also possible to generate entanglement between photons and the atom by using a different atomic transition and initial Zeeman state.Comment: 22 pages (RevTeX), including 23 postscript figures. To be published in Physical Review

    A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2

    Get PDF
    The A-dependence of the quasielastic A(e,e'p) reaction has been studied at SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the average probability that the struck proton escapes from the nucleus A without interaction. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as Color Transparency. No significant rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73

    Generation of a wave packet tailored to efficient free space excitation of a single atom

    Full text link
    We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wave and show the required spatial and temporal shaping of the mode incident onto the mirror. The results include a proof of principle correction of the parabolic mirror's aberrations. For the application of exciting an atom with a single photon pulse we demonstrate the creation of a suitable temporal pulse envelope. We infer coupling strengths of 89% and success probabilities of up to 87% for the application of exciting a single atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic

    On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)

    Get PDF
    In October 1924, the Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Van Vleck combined advanced techniques of classical mechanics with Bohr's correspondence principle and Einstein's quantum theory of radiation to find quantum analogues of classical expressions for the emission, absorption, and dispersion of radiation. For modern readers Van Vleck's paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisenberg's "Umdeutung" paper. This makes Van Vleck's paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself.Comment: 82 page
    • 

    corecore