801 research outputs found

    Pennies and Eggs: Initiation Into Inquiry Learning for Pre-Service Elementary Education Teachers

    Get PDF
    Two labs incorporating the Science Writing Heuristic are described that introduce scientific inquiry in a course for preservice students majoring in elementary education. One lab adapts a previously described discovery learning opportunity involving the change in composition and mass of pennies in 1982. The other involves the use of flotation methods to separate hard-boiled and uncooked eggs based on density. Evidence for student engagement with the method is presented, along with analysis of persistent problems with the concept of density revealed by students’ writing about their understandings

    Threshold Behavior Of (gaal)as-gaas Lasers At Low Temperatures

    Get PDF
    The temperature dependence of the threshold current, differential quantum efficiency, and internal loss have been measured in the temperature range 10-293°K. The threshold current increases relatively slowly with temperature above 100°K and is independent of the impurity concentration. Theoretical calculation shows that this behavior is to be expected for a band-to-band transition that follows k selection. The threshold behavior at low temperatures (≤ 80°K) depends strongly on the type and concentration of the impurity. The relatively fast decrease in threshold below 100°K shows saturation for an active layer with n-type impurities or with high-concentration p-type impurities. The saturation is attributed to the carrier diffusion length becoming smaller than the active-layer thickness. The internal differential quantum efficiency is near unity and is independent of temperature. The internal loss, however, decreases with temperature due to reduction in free-carrier absorption.491293

    Hydrogen patterning of Ga1-xMnxAs for planar spintronics

    Full text link
    We demonstrate two patterning techniques based on hydrogen passivation of Ga1-xMnxAs to produce isolated ferromagnetically active regions embedded uniformly in a paramagnetic, insulating host. The first method consists of selective hydrogenation of Ga1-xMnxAs by lithographic masking. Magnetotransport measurements of Hall-bars made in this manner display the characteristic properties of the hole-mediated ferromagnetic phase, which result from good pattern isolation. Arrays of Ga1-xMnxAs dots as small as 250 nm across have been realized by this process. The second process consists of blanket hydrogenation of Ga1-xMnxAs followed by local reactivation using confined low-power pulsed-laser annealing. Conductance imaging reveals local electrical reactivation of micrometer-sized regions that accompanies the restoration of ferromagnetism. The spatial resolution achievable with this method can potentially reach <100 nm by employing near-field laser processing. The high spatial resolution attainable by hydrogenation patterning enables the development of systems with novel functionalities such as lateral spin-injection as well as the exploration of magnetization dynamics in individual and coupled structures made from this novel class of semiconductors.Comment: ICDS-24, July 2007. 8 pages with 4 figure

    Fostering Preservice Teacher Identity in Science through a Student-Selected Project

    Get PDF
    This article addresses the problem of authentic student engagement in the science classroom by incorporating a semester long research and writing assignment that enables students to investigate scientific topics related to strong personal, career, or health interests

    Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors

    Full text link
    We consider the real part of the conductivity, \sigma_1(\omega), arising from classical phase fluctuations in a model for high-T_c superconductors. We show that the frequency integral of that conductivity, \int_0^\infty \sigma_1 d\omega, is non-zero below the superconducting transition temperature TcT_c, provided there is some quenched disorder in the system. Furthermore, for a fixed amount of quenched disorder, this integral at low temperatures is proportional to the zero-temperature superfluid density, in agreement with experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.

    Revisiting Cardassian Model and Cosmic Constraint

    Full text link
    In this paper, we revisit the Cardassian model in which the radiation energy component is included. It is important for early epoch when the radiation cannot be neglected because the equation of state (EoS) of the effective dark energy becomes time variable. Therefore, it is not equivalent to the quintessence model with a constant EoS anymore. This situation was almost overlooked in the literature. By using the recent released Union2 557 of type Ia supernovae (SN Ia), the baryon acoustic oscillation (BAO) from Sloan Digital Sky Survey and the WiggleZ data points, the full information of cosmic microwave background (CMB) measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observation, we constrain the Cardassian model via the Markov Chain Monte Carlo (MCMC) method. A tight constraint is obtained: n=0.04790.07320.148+0.0730+0.142n= -0.0479_{- 0.0732- 0.148}^{+ 0.0730+ 0.142} in 1,2σ1,2\sigma regions. The deviation of Cardassian model from quintessence model is shown in CMB anisotropic power spectra at high l's parts due to the evolution of EoS. But it is about the order of 0.1% which cannot be discriminated by current data sets. The Cardassian model is consistent with current cosmic observational data sets.Comment: 6 pages, 5 figures, match the published versio

    Boundary Effects on Dynamic Behavior of Josephson-Junction Arrays

    Full text link
    The boundary effects on the current-voltage characteristics in two-dimensional arrays of resistively shunted Josephson junctions are examined. In particular, we consider both the conventional boundary conditions (CBC) and the fluctuating twist boundary conditions (FTBC), and make comparison of the obtained results. It is observed that the CBC, which have been widely adopted in existing simulations, may give a problem in scaling, arising from rather large boundary effects; the FTBC in general turn out to be effective in reducing the finite-size effects, yielding results with good scaling behavior. To resolve the discrepancy between the two boundary conditions, we propose that the proper scaling in the CBC should be performed with the boundary data discarded: This is shown to give results which indeed scale well and are the same as those from the FTBC.Comment: RevTex, Final version to appear in Phys. Rev.

    Parametric amplification of metric fluctuations through a bouncing phase

    Full text link
    We clarify the properties of the behavior of classical cosmological perturbations when the Universe experiences a bounce. This is done in the simplest possible case for which gravity is described by general relativity and the matter content has a single component, namely a scalar field in a closed geometry. We show in particular that the spectrum of scalar perturbations can be affected by the bounce in a way that may depend on the wave number, even in the large scale limit. This may have important implications for string motivated models of the early Universe.Comment: 17 pages, 12 figures, LaTeX-ReVTeX format, version to match Phys. Rev.

    BRST quantization of anomalous gauge theories

    Get PDF
    It is shown how the BRST quantization can be applied to a gauge invariant sector of theories with anomalously broken symmetries. This result is used to show that shifting the anomalies to a classically trivial sector of fields (Wess-Zumino mechanism) makes it possible to quantize the physical sector using a standard BRST procedure, as for a non anomalous theory. The trivial sector plays the role of a topological sector if the system is quantized without shifting the anomalies.Comment: 16 pages, latex, revised and enlarged version to appear in Phys.Rev.
    corecore