80 research outputs found

    MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications

    Get PDF
    Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications. However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity

    A novel sub-seabed CO<sub>2</sub> release experiment informing monitoring and impact assessment for geological carbon storage

    Get PDF
    Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. Funding: UK Research and Innovation and National Institute for Health Research

    Faecal elastase 1: A marker of exocrine pancreatic insufficiency in cystic fibrosis

    No full text
    Pancreatic elastase 1 (E1), a digestive protease, is synthesized by the acinar cells of the pancreas. Using an enzyme-linked immunosorbent assay, we evaluated stool E1 levels in the following groups of patients: (a) Specimens submitted for occult blood examination from 20 adults, over 3 consecutive days, to assess the inter-day variability in E1 excretion. There were no symptoms suggestive of pancreatic insufficiency in this group. The mean E1 concentration over all samples was 457 μg E1/g stool (range 124-1683). The intra-assay variation was 6.4% (n = 14) and the inter-assay variation was 8.8% (n = 12). The mean intra-patient variation was 17%. (b) Cystic fibrosis (CF) patients. Eight patients had E1 levels in the reference range (&gt; 200 μg E1/g stool). The remaining 25 patients had undetectable E1 levels. (c) A control group of children presenting with unexplained bronchiectasis and/or recurrent respiratory infections and no symptoms of pancreatic dysfunction. The mean E1 concentration in the group was 519 μg E1/g stool (range 139-1941). There was no significant difference in E1 concentrations between the two non-CF groups, nor between the pancreatic-sufficient CF patients when compared with both non-CF groups. There was a significant difference between the pancreatic-sufficient and insufficient CF groups (P &lt; 0.001 ) using the Mann-Whitney U test. All fifteen CF patients who were ΔF508 homozygotes had undetectable E1. It may be possible to relate CF genotype to the presence or absence of E1 and to the degree of pancreatic insufficiency. Measurement of faecal E1 in children with CF appears to differentiate them into a group of children with normal pancreatic function and a larger group with severe insufficiency.</p

    Environmental constraints upon locomotion and predator–prey interactions in aquatic organisms: an introduction

    No full text
    Environmental constraints in aquatic habitats have become topics of concern to both the scientific community and the public at large. In particular, coastal and freshwater habitats are subject to dramatic variability in various environmental factors, as a result of both natural and anthropogenic processes. The protection and sustainable management of all aquatic habitats requires greater understanding of how environmental constraints influence aquatic organisms. Locomotion and predator–prey interactions are intimately linked and fundamental to the survival of mobile aquatic organisms. This paper summarizes the main points from the review and research articles which comprise the theme issue ‘Environmental constraints upon locomotion and predator–prey interactions in aquatic organisms’. The articles explore how natural and anthropogenic factors can constrain these two fundamental activities in a diverse range of organisms from phytoplankton to marine mammals. Some major environmental constraints derive from the intrinsic properties of the fluid and are mechanical in nature, such as viscosity and flow regime. Other constraints derive from direct effects of factors, such as temperature, oxygen content of the water or turbidity, upon the mechanisms underlying the performance of locomotion and predator–prey interactions. The effect of these factors on performance at the tissue and organ level is reflected in constraints upon performance of the whole organism. All these constraints can influence behaviour. Ultimately, they can have an impact on ecological performance. One issue that requires particular attention is how factors such as temperature and oxygen can exert different constraints on the physiology and behaviour of different taxa and the ecological implications of this. Given the multiplicity of constraints, the complexity of their interactions, and the variety of biological levels at which they can act, there is a clear need for integration between the fields of physiology, biomechanics, behaviour, ecology, biological modelling and evolution in both laboratory and field studies. For studies on animals in their natural environment, further technological advances are required to allow investigation of how the prevailing physico-chemical conditions influence basic physiological processes and behaviour
    • …
    corecore