35 research outputs found
Non-Abelian hydrodynamics and the flow of spin in spin-orbit coupled substances
Motivated by heavy ion collision experiments, we study the hydrodynamic
properties of non-Abelian systems. These issues arise in condensed matter
physics in the context of transport of spins in the presence of spin orbit
coupling: the Pauli Hamiltonian governing the leading relativistic corrections
in condensed matter systems can be rewritten in a language of SU(2) covariant
derivatives, where the role of the non-Abelian gauge fields is taken by the
physical electromagnetic fields. Taking a similar perspective as Jackiw and
coworkers, we show that non-abelian hydrodynamical currents can be factored in
a non-coherent 'classical' part, and a coherent part requiring macroscopic
non-abelian quantum entanglement. Non-abelian flow being thus a much richer
affair than familiar hydrodynamics, permits us to classify the various spin
transport phenomena in in condensed matter physics in a unifying framework.In
semiconductor spintronics, the absence of hydrodynamics is well known, but in
our formulation it is directly associated with the fact that non-abelian
currents are only covariantly conserved.We analyze the quantum mechanical
single particle currents of relevance to mesoscopic transport with as highlight
the Aharonov-Casher effect, where we demonstrate that the non-abelian transport
structure renders it much more fragile than its abelian counterpart, the
Aharonov-Bohm effect. We subsequently focus on spin flows protected by order
parameters, of which the spin-spiral magnets and the spin superfluids are
important examples. The surprising bonus is that the presence of an order
parameter, being single-valued, restores hydrodynamics. We demonstrate a new
effect: the trapping of electrical line charge, being the 'fixed frame'
non-Abelian analogue of the familiar magnetic flux trapping by superconductors.Comment: 23 pages, 7 figure
Scalar-Tensor Gravity and Quintessence
Scalar fields with inverse power-law effective potentials may provide a
negative pressure component to the energy density of the universe today, as
required by cosmological observations. In order to be cosmologically relevant
today, the scalar field should have a mass
, thus potentially inducing sizable
violations of the equivalence principle and space-time variations of the
coupling constants. Scalar-tensor theories of gravity provide a framework for
accommodating phenomenologically acceptable ultra-light scalar fields. We
discuss non-minimally coupled scalar-tensor theories in which the scalar-matter
coupling is a dynamical quantity. Two attractor mechanisms are operative at the
same time: one towards the tracker solution, which accounts for the accelerated
expansion of the Universe, and one towards general relativity, which makes the
ultra-light scalar field phenomenologically safe today. As in usual
tracker-field models, the late-time behavior is largely independent on the
initial conditions. Strong distortions in the cosmic microwave background
anisotropy spectra as well as in the matter power spectrum are expected.Comment: 5 pages, 4 figure
Measuring in the Early Universe: CMB Temperature, Large-Scale Structure and Fisher Matrix Analysis
We extend our recent work on the effects of a time-varying fine-structure
constant in the cosmic microwave background, by providing a thorough
analysis of the degeneracies between and the other cosmological
parameters, and discussing ways to break these with both existing and/or
forthcoming data. In particular, we present the state-of-the-art CMB
constraints on , through a combined analysis of the BOOMERanG, MAXIMA
and DASI datasets. We also present a novel discussion of the constraints on
coming from large-scale structure observations, focusing in particular
on the power spectrum from the 2dF survey. Our results are consistent with no
variation in from the epoch of recombination to the present day, and
restrict any such (relative) variation to be less than about 4%. We show that
the forthcoming MAP and (particularly) Planck experiments will be able to break
most of the currently existing degeneracies between and other
parameters, and measure to better than percent accuracy.Comment: 11 pages in RevTex4 format. Low-quality figures to comply with arXiv
restrictions (better ones available from the authors). v2: Updated Oklo
discussion, plus other cosmetic changes. Version to appear in Phys Rev
On the Detection of a Scalar Stochastic Background of Gravitational Waves
In the near future we will witness the coming to a full operational regime of
laser interferometers and resonant mass detectors of spherical shape. In this
work we study the sensitivity of pairs of such gravitational wave detectors to
a scalar stochastic background of gravitational waves. Our computations are
carried out both for minimal and non minimal coupling of the scalar fields.Comment: 25 pages, 3 figure
Cosmological Evolution of Brane World Moduli
We study cosmological consequences of non-constant brane world moduli in five
dimensional brane world models with bulk scalars and two boundary branes. We
focus on the case where the brane tension is an exponential function of the
bulk scalar field, . In the limit , the model reduces to the two-brane model of Randall-Sundrum, whereas larger
values of allow for a less warped bulk geometry. Using the moduli
space approximation, we derive the four-dimensional low-energy effective action
from a supergravity-inspired five-dimensional theory. For arbitrary values of
, the resulting theory has the form of a bi-scalar-tensor theory. We
show that, in order to be consistent with local gravitational observations,
has to be small (less than ) and the separation of the branes
must be large. We study the cosmological evolution of the interbrane distance
and the bulk scalar field for different matter contents on each branes. Our
findings indicate that attractor solutions exist which drive the moduli fields
towards values consistent with observations. The efficiency of the attractor
mechanism crucially depends on the matter content on each branes. In the
five-dimensional description, the attractors correspond to the motion of the
negative tension brane towards a bulk singularity, which signals the eventual
breakdown of the four-dimensional description and the necessity of a better
understanding of the bulk singularity.Comment: 18 pages, 10 figures, typos and factor of 2 corrected, version to
appear in Physical Review
Holographic Cosmic Quintessence on Dilatonic Brane World
Recently quintessence is proposed to explain the observation data of
supernova indicating a time-varying cosmological constant and accelerating
universe. Inspired by this and its mysterious origin, we look for the
possibility of quintessence as the holographic dark matters dominated in the
late time in the brane world scenarios. We consider both the cases of static
and moving brane in a dilaton gravity background. For the static brane we use
the Hamilton-Jacobi method motivated by holographic renormalization group to
study the intrinsic FRW cosmology on the brane and find out the constraint on
the bulk potential for the quintessence. This constraint requires a negative
slowly varying bulk potential which implies an anti-de Sitter-like bulk
geometry and could be possibly realized from the higher dimensional
supergravities or string theory. We find the similar constraint for the moving
brane cases and that the quintessence on it has the effect as a mildly
time-varying Newton constant.Comment: 16pages, no figure, Latex; revised version, references added, typos
corrected, abstract and comments improved; final version, will appear in PR
Recommended from our members
Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue
The Semi-Arid Land-Surface-Atmosphere Program (SALSA) is a multi-agency, multi-national research effort that seeks to evaluate the consequences of natural and human-induced environmental change in semi-arid regions. The ultimate goal of SALSA is to advance scientific understanding of the semi-arid portion of the hydrosphere–biosphere interface in order to provide reliable information for environmental decision making. SALSA approaches this goal through a program of long-term, integrated observations, process research, modeling, assessment, and information management that is sustained by cooperation among scientists and information users. In this preface to the SALSA special issue, general program background information and the critical nature of semi-arid regions is presented. A brief description of the Upper San Pedro River Basin, the initial location for focused SALSA research follows. Several overarching research objectives under which much of the interdisciplinary research contained in the special issue was undertaken are discussed. Principal methods, primary research sites and data collection used by numerous investigators during 1997–1999 are then presented. Scientists from about 20 US, five European (four French and one Dutch), and three Mexican agencies and institutions have collaborated closely to make the research leading to this special issue a reality. The SALSA Program has served as a model of interagency cooperation by breaking new ground in the approach to large scale interdisciplinary science with relatively limited resources
Bounds on the possible evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae
Recent high-redshift Type Ia supernovae results can be used to set new bounds
on a possible variation of the gravitational constant . If the local value
of at the space-time location of distant supernovae is different, it would
change both the kinetic energy release and the amount of Ni synthesized
in the supernova outburst. Both effects are related to a change in the
Chandrasekhar mass . In addition, the integrated
variation of with time would also affect the cosmic evolution and therefore
the luminosity distance relation. We show that the later effect in the
magnitudes of Type Ia supernovae is typically several times smaller than the
change produced by the corresponding variation of the Chandrasekhar mass. We
investigate in a consistent way how a varying could modify the Hubble
diagram of Type Ia supernovae and how these results can be used to set upper
bounds to a hypothetical variation of . We find G/G_0 \la 1.1 and G'/G
\la 10^{-11} yr^{-1} at redshifts . These new bounds extend the
currently available constrains on the evolution of all the way from solar
and stellar distances to typical scales of Gpc/Gyr, i.e. by more than 15 orders
of magnitudes in time and distance.Comment: 9 pages, 4 figures, Phys. Rev. D. in pres
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available