870 research outputs found

    Neutron depolarization studies of Pd-Ni-Fe-P alloy

    Get PDF
    Bulk metallic glasses based on the quaternary alloy Pd-Ni-Fe-P exhibit interesting phase behavior depending on temperature and applied magnetic field. Previous work has suggested that a range of magnetic phases including paramagnetic, superparamagnetic, ferromagnetic and spin glass can be observed in this system. We have applied one dimensional neutron depolarization to explore the correlation of magnetic moments in Pd40Ni22.5Fe17.5P20 alloy as a function of temperature and applied magnetic field. The results provided evidence for correlation lengths of ~ 200 Ă…. The nature of the correlations and the formation mechanism of the induced ferromagnetic phase are discusse

    Solution Of Wheeler-De Witt Equation, Potential Well And Tunnel Effect

    Full text link
    This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-DeWitt equation, gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it fit with the physics of cosmic quantum birth. By solving Wheeler-DeWitt equation we achieve a general probability distribution of the cosmic birth, and give the analysis of cosmic quantum birth.Comment: 12 page

    Vertical transport and electroluminescence in InAs/GaSb/InAs structures: GaSb thickness and hydrostatic pressure studies

    Full text link
    We have measured the current-voltage (I-V) of type II InAs/GaSb/InAs double heterojunctions (DHETs) with 'GaAs like' interface bonding and GaSb thickness between 0-1200 \AA. A negative differential resistance (NDR) is observed for all DHETs with GaSb thickness >> 60 \AA below which a dramatic change in the shape of the I-V and a marked hysteresis is observed. The temperature dependence of the I-V is found to be very strong below this critical GaSb thickness. The I-V characteristics of selected DHETs are also presented under hydrostatic pressures up to 11 kbar. Finally, a mid infra-red electroluminescence is observed at 1 bar with a threshold at the NDR valley bias. The band profile calculations presented in the analysis are markedly different to those given in the literature, and arise due to the positive charge that it is argued will build up in the GaSb layer under bias. We conclude that the dominant conduction mechanism in DHETs is most likely to arise out of an inelastic electron-heavy-hole interaction similar to that observed in single heterojunctions (SHETs) with 'GaAs like' interface bonding, and not out of resonant electron-light-hole tunnelling as proposed by Yu et al. A Zener tunnelling mechanism is shown to contribute to the background current beyond NDR.Comment: 8 pages 12 fig

    Thermodynamic and transport properties of underdoped cuprates from ARPES data

    Full text link
    he relationship between photoemission spectra of high-TcT_{\textrm{c}} cuprates and their thermodynamic and transport properties are discussed. The doping dependence of the expected quasi-particle density at the Fermi level (EFE_\mathrm{F}) are compared with the electronic specific heat coefficient Îł\gamma and that of the spectral weight at EFE_\mathrm{F} with the in-plane and out-of-plane superfluid density. We have estimated the electrical resistivity of underdoped cuprates from the momentum distribution curve (MDC) at EFE_\mathrm{F} in the nodal direction. The temperature dependence of the MDC width is also consistent with that of the electrical resistivity.Comment: 14 pages, 4 figures, proceeding of International Symposium on Synchrotron Radiatin Research for Spin and Electronic States in d and f Electron Systems(SRSES2003

    Photosynthetic characteristics of summer maize under different planting patterns and the responses to nitrogen application of previous crop

    Get PDF
    Maize (Zea mays L.) is one of the most important grain crops in the North China Plain. Management practices affect the photosynthetic characteristics and the production of summer maize. This two-year (2014-2015) study examined the effects of different planting patterns and the application of nitrogen to previous winter wheat (Triticum aestivum L.) on the photosynthetic characteristics, yield and radiation use efficiency (RUE) of summer maize. Field experiments used a two-factor split-plot design with three replicates at Taian, Shandong Province, China (36°09′ N, 117°09′ E). The experiments involved two planting patterns (ridge planting, RP; and uniform row planting, UR) and two nitrogen application levels of previous winter wheat (N1, 112.50 kg ha-1; N2, 225.00 kg ha-1). The results indicated that the application of nitrogen on previous crop and ridge planting of the following crop had significant effects on the photosynthetic characteristics and yields of summer maize. Compared with UR, this study found that RP increased the chlorophyll content index (CCI), leaf area index (LAI), net photosynthetic rate (Pn), dry matter (DM), yield and grain RUE by 4.1%, 6.3%, 5.2%, 6.4%, 8.9% and 9.4%, respectively. The CCI, LAI, Pn, yield, and grain RUE of N2 were 9.7%, 3.3%, 3.7%, 10.0% and 10.1% higher than those of N1, respectively. RP combined with the application of nitrogen on previous crop of winter wheat could increase the CCI, LAI, Pn, DM, ultimately increasing the grain yield and RUE of the following summer’s maize. It was concluded that previous crop nitrogen application and RP pattern treatment resulted in optimal cropping conditions for the North China plain

    Surface electronic structure of Sr2RuO4

    Full text link
    We have addressed the possibility of surface ferromagnetism in Sr2RuO4 by investigating its surface electronic states by angle-resolved photoemission spectroscopy (ARPES). By cleaving samples under different conditions and using various photon energies, we have isolated the surface from the bulk states. A comparison with band structure calculations indicates that the ARPES data are most readily explained by a nonmagnetic surface reconstruction.Comment: 4 pages, 4 figures, RevTex, submitted to Phys. Rev.

    Coupling between planes and chains in YBa2Cu3O7 : a possible solution for the order parameter controversy

    Full text link
    We propose to explain the contradictory experimental evidence about the symmetry of the order parameter in YBa2Cu3O7YBa_{2}Cu_{3}O_{7} by taking into account the coupling between planes and chains. This leads to an anticrossing of the plane and chain band. We include an attractive pairing interaction within the planes and a repulsive one between planes and chains, leading to opposite signs for the order parameter on planes and chains, and to nodes of the gap because of the anticrossing. Our model blends s-wave and d-wave features, and provides a natural explanation for all the contradictory experimentsComment: 13 pages, revtex, 2 uucoded figure

    Spin-Orbit Splitting in Non-Relativistic and Relativistic Self-Consistent Models

    Get PDF
    The splitting of single-particle energies between spin-orbit partners in nuclei is examined in the framework of different self-consistent approachs, non-relativistic as well as relativistic. Analytical expressions of spin-orbit potentials are given for various cases. Proton spin-orbit splittings are calculated along some isotopic chains (O, Ca, Sn) and they are compared with existing data. It is found that the isotopic dependence of the relativistic mean field predictions is similar to that of some Skyrme forces while the relativistic Hartree-Fock approach leads to a very different dependence due to the strong non-locality.Comment: 12 pages, RevTeX, 4 new figs.in .zip format, unchanged conclusions, Phys. ReV.

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    Influence of entrance-channel magicity and isospin on quasi-fission

    Get PDF
    The role of spherical quantum shells in the competition between fusion and quasi-fission is studied for reactions forming heavy elements. Measurements of fission fragment mass distributions for different reactions leading to similar compound nuclei have been made near the fusion barrier. In general, more quasi-fission is observed for reactions with non-magic nuclei. However, the 40^{40}Ca+208^{208}Pb reaction is an exception, showing strong evidence for quasi-fission, though both nuclei are doubly magic. Time-dependent Hartree-Fock calculations predict fast equilibration of N/ZN/Z in the two fragments early in the collision. This transfer of nucleons breaks the shell effect, causing this reaction to behave more like a non-magic one in the competition between fusion and quasi-fission. Future measurements of fission in reactions with exotic beams should be able to test this idea with larger N/ZN/Z asymmetries.Comment: accepted for publication in Physics Letters
    • …
    corecore