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Abstract

The role of spherical quantum shells in the competition between fusion and quasi-fission is studied for reactions forming heavy

elements. Measurements of fission fragment mass distributions for different reactions leading to similar compound nuclei have

been made near the fusion barrier. In general, more quasi-fission is observed for reactions with non-magic nuclei. However,

the 40Ca+208Pb reaction is an exception, showing strong evidence for quasi-fission, though both nuclei are doubly magic. Time-

dependent Hartree-Fock calculations predict fast equilibration of N/Z in the two fragments early in the collision. This transfer

of nucleons breaks the shell effect, causing this reaction to behave more like a non-magic one in the competition between fusion

and quasi-fission. Future measurements of fission in reactions with exotic beams should be able to test this idea with larger N/Z

asymmetries.
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Quantum shell effects play a key role in the structure and

stability of atomic nuclei, as they do in the periodic chemical

properties of the elements. Where there is a large energy gap to

the next quantum level, the total number of protons or neutrons

filling all levels below the gap is referred to as a magic number.

In particular, magic nuclei have a smaller mass per nucleon than

their neighbours. The variation of the magic numbers across the

nuclear chart is crucial to build our understanding of the nuclear

quantum many-body system. One major challenge is to define

the magic numbers in the region of the superheavy elements

(SHE), with Z ≥ 110 protons [1, 2, 3, 4]. Associated with

this, atom-by-atom measurements of the chemical properties of

SHE are testing the predicted strong relativistic effects on the

electrons which modify the periodic Table [5].

SHE up to Z = 118 have been synthesised in fusion reac-

tions of heavy nuclei, either using 208Pb and 209Bi targets [1, 2],

or 48Ca beams on actinide targets [3, 4]. Production cross sec-

tions are, however, extremely small (of the order of a few pico-

barns), and a good understanding of the reaction mechanisms

is needed to optimise their production. To achieve a compre-

hensive global picture of SHE formation is very challenging, as

many variables may affect fusion probabilities. These include

collision energy, mass-asymmetry, deformation and orientation,

isospin, and shell structure of the colliding nuclei. These vari-

ables are often strongly entangled, making it difficult to isolate

the effect of a single variable. Furthermore, these properties

evolve dynamically, thus it is necessary to understand the dif-

ferent associated time scales.

The early stage of the collision is a crucial step in SHE for-

mation, where the initial conditions are the most important.
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These determine the configuration at which the colliding part-

ners have dissipated their kinetic energy, thus determining the

shape of the initial fragile dinucleus. This can break apart, gen-

erally after multiple nucleon transfers (mainly from the heavy to

the light partner), in a process called quasi-fission (QF) [6, 7, 8].

Alternatively it may reach compact shapes, fusing to form a hot

compound nucleus (CN), which can lead to formation of a SHE

through neutron evaporation in competition with CN fission.

Although the CN survival probability against fission is very

small, its decay width is governed by the well-known equations

for statistical decay, which should allow prediction of the rela-

tive survival probabilities from different fusion reactions. This

is not the case for QF, which is a completely dynamical pro-

cess, and depends on many variables which can be different for

different reactions. The nature of the two fission processes are

reflected in their time scales, which can be very different. Typ-

ical times scales for QF are shorter than 10−20 s [6, 7, 8, 9],

but can be longer than 10−16 s [10] for fusion-fission. To ef-

ficiently form SHE, the entrance channel conditions should be

chosen to minimise the QF probability, which is dominant in

reactions forming SHE. Beyond the basic principle of minimis-

ing the Coulomb energy in the entrance channel, a quantitative

understanding of the effects of nuclear structure on the compe-

tition between fusion and QF is a key missing ingredient.

At collision energies above the fusion barrier, a systematic

analysis showed that closed shells in the colliding nuclei have

a relatively small effect on fusion probabilities [11]. However,

at energies around the barrier, the competition between fusion

and QF is known to be affected by (shell-driven) nuclear defor-

mation and orientation [12, 13, 14, 15, 16, 17, 18]. Spherical

shells may also be important, resulting in so-called “cold val-

leys” in the potential energy surface, which lead to the compact

CN configuration [19, 20, 21, 22]. Fusion through these val-
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Figure 1: (colour online). Measured mass-angle distributions for each reaction (upper panels). The factor multiplies the maximum counts of the logarithmic colour

scale (right). In the projected mass ratio spectra (lower panels) the scale factor multiplies the counts scale on the left. The difference between the scale factors is due

to the various statistics obtained with each system. Gaussian fits to the region around MR=0.5 are shown (turquoise lines), whose standard deviations σ are given in

Table 1. Gaussian functions with σMR = 0.07 (thin red lines) are shown for reference.

leys may also be favoured because energy dissipation should be

weaker, allowing greater inter-penetration before the initial ki-

netic energy is dissipated [11, 23]. These effects may be vital

in the recent successful synthesis of SHE [1, 2, 3, 4]. However,

the interplay of spherical shells with other degrees of freedom,

such as the isospin of the two colliding nuclei, has not yet been

investigated.

In this letter, the role of spherical shells (magicity) on the QF

probability is first demonstrated through fission measurements

for reactions with relatively small initial isospin asymmetry, or

more precisely N/Z asymmetry, quantified by the difference be-

tween the N/Z ratios of the initial colliding nuclei ∆(N/Z)i.

Then, the case of a magic reaction with large ∆(N/Z)i is in-

vestigated. The time scales for QF and isospin equilibration are

investigated with the help of calculations, and used to explain

the measurements in terms of the dynamical interplay between

isospin asymmetry and spherical shells.

Measurements were made using the 14UD electrostatic ac-

celerator at the Australian National University. Pulsed beams

of 111 MeV 16O and 213.5 MeV 40Ca, and DC beams (giv-

ing higher intensities) of 212 MeV 44Ca, 213 MeV 48Ca, and

230, 235 MeV 48Ti were produced from metallic natCa and natTi

samples. Isotopically enriched targets of 204Pb (420 µg/cm2

self-supporting), and 208PbS (30 µg/cm2), 200Hg (15 µg/cm2)

and 238UF4 (400 µg/cm2), evaporated onto ∼15 µg/cm2 natC

backings, were mounted on a target ladder whose normal was

at 60 ◦ to the beam. Binary reaction products were detected

in coincidence using two 28×36 cm2 position-sensitive mul-

tiwire proportional counters on opposite sides of the beam,

covering laboratory scattering angles of 5 ◦ < θ < 80 ◦ and

50 ◦ < θ < 125 ◦. For the pulsed beams, the measured positions

and times-of-flight allowed direct reconstruction of the frag-

ment velocities [14]. With DC beams, the velocities were deter-

mined from the time difference between the two fragments [24],

assuming binary reactions and full momentum transfer, which

will be valid for the low fissility targets used [14]. Following

iterative correction for energy loss in the target, the mass ratio

MR = m1/(m1 + m2) (where m1 and m2 are the two fragment

masses) and the centre-of-mass (c.m.) scattering angle θc.m.
were deduced. Since both fragments are detected, the mass-

angle distribution (MAD) is populated twice [24], at (MR, θc.m.)

and (1 − MR, π − θc.m.).

The MAD for the reactions measured are shown in the up-

per panels of Fig. 1. The reactions with Ca and Ti beams form

isotopes of the elements No (Z=102) and Rf (Z=104), and in-

volve similar charge products in the entrance-channel. The
16O+238U reaction forms Fm (Z=100), but with less than half

the entrance-channel charge product. In the measurement the

azimuthal coincidence coverage was essentially 90 ◦ for all θ,

thus the number of events in each MAD bin is proportional

to the angular differential cross section dσ/dθc.m.. Note, how-

ever, that every MAD has a different coefficient of proportion-

ality due to the varying statistics obtained for each reaction.

The intense bands at extreme MR values correspond to elas-

tic and quasi-elastic (QE) scattering, while fission-like events,

associated with either fusion-fission or QF, are spread around

MR = 0.5. Note that, in our measurements with Ca and Ti

beams, both fusion and QF occur at similar partial waves. In-

deed, the beam energies correspond to below-barrier energies,

as can be seen from Table 1, where centre-of-mass energies and

calculated barrier energies are given. Thus the angular mo-

menta involved are low, and those of fusion and quasi-fission

are bound to show a large overlap.

For the heavier projectiles, the fission-like events clearly

show a correlation of fragment mass with angle, resulting from

the short reaction times (≤ 10−20 s) [7, 8, 9]. For example, for

the 44Ca+204Pb reaction, the MR centroid for 125 ◦ < θc.m. <

135 ◦ is 0.511 ± 0.004. Although the deviation from MR=0.5
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is small, it is much larger than the statistical uncertainty, and

as clearly seen in the MAD, varies consistently with θc.m.. Ref-

erence measurements for the reactions of 16O with 208Pb, and

with 238U (shown in the left-most panel of Fig. 1) give essen-

tially no correlation of mass with angle, consistent with much

longer fission times.

The lower panels of Fig. 1 show the MR projections of the

MAD spectra above. The widths of the fission-like fragment

mass distributions are expected to be larger in the presence of

QF than if only fusion-fission is present [8, 17, 25]. To char-

acterise the MR distributions for the fission-like events, and

to allow comparison with previous work [27], they were fit-

ted with Gaussian functions, within the range 0.34≤MR≤0.66

(turquoise curves in Fig. 1) so as to exclude deep-inelastic and

QE events. For 16O+238U, we choose 0.2≤MR≤0.8 as only

fission-like events were detected. The fitted standard deviations

σMR are given in Table 1, together with the value for 218 MeV
48Ca+208Pb from Ref. [27]. Since it may well be that the true

distributions are not single Gaussians [14, 17, 24, 27, 28, 29],

we also compute the standard deviation ΣMR of the data points

in the same 0.34≤MR≤0.66 range, which are also given in Ta-

ble 1. Of course, σMR and ΣMR are different quantities with dif-

ferent values, but they both constitute a measure of the width of

the fission-like fragment mass distributions, the latter indepen-

dent of any assumed shape. As will be seen, the two quantities

do exhibit the same trends, and together with the reasonable

reproduction of the experimental data by the Gaussian fits, sug-

gest that the fitted standard deviations σMR give a reasonable

representation of the mass width of the fission-like events, with

a single parameter.

In order to investigate the influence on quasi-fission of spher-

ical shells in the entrance channel, we plot in Fig. 2 the widths

(σMR and ΣMR) of the fission-like fragment distributions as a

function of the number Nm of entrance channel magic numbers

(given in Table 1). The possible proton and neutron magic num-

bers for projectile and target nuclei are Z = 20 and N = 20, 28,

and Z = 82 and N = 126 respectively. An upper limit to

the standard deviation σMR for fusion-fission (σ f iss) of 0.07-

0.08 can be taken from the present and previous [8, 14] mea-

surements for 16O+238U. This is only an upper limit as it was

shown [14] that QF contributes to fission-like events even in

this reaction. This range is indicated by the horizontal band in

Fig. 2(a). Only the 48Ca+204,208Pb data lie in this range. All

other reactions have larger widths, indicating the presence of

QF [8, 17, 25], a result consistent with the observation of a de-

pendence of mean fragment mass with angle in the measured

MAD presented in Fig. 1.

Apart from the 40Ca+208Pb reaction, discussed later, a clear

correlation is seen in Fig. 2 between the entrance channel

magicity, quantified by Nm, and the amount of QF, related to

σMR − σ f iss: the less entrance-channel magicity, the more QF.

As discussed in the introduction, this correlation could result

from cold valleys in the potential energy surface [19, 20, 21,

22] and/or weaker energy dissipation [11, 23], both effects be-

ing associated with the spherical shells. As a result, a greater

inter-penetration of the two nuclei should then be achieved,

leading to a higher fusion probability, and, consequently, a
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Figure 2: (colour online). (a) Standard deviations σMR of the Gaussian fits

of the fission-like fragment mass distributions as a function of the number of

magic numbers in the entrance channel Nm. The horizontal band shows the

upper limit of σMR for pure fusion-fission (i.e., without QF). (b) Standard de-

viation ΣMR in the 0.34≤MR≤0.66 range. The dotted line corresponds to a flat

distribution. When not shown, the statistical uncertainties are smaller than the

size of the points. The dashed lines guide the eye.
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Table 1: Standard deviation ΣMR of fission-like fragment mass distributions and standard deviation σMR of their Gaussian fits (see text) for each reaction, with

statistical uncertainties. Nm is the total number of magic numbers in target and projectile, and ∆(N/Z)i is the difference between their N
Z

ratios. Centre-of-mass

energies Ec.m. and theoretical barriers Bth from the proximity model [30] are in MeV.

reaction CN Ec.m. Bth Nm ∆( N
Z

)
i

σMR ΣMR
16O+238U 254Fm 104.0 80.3 2 0.59 0.081 ± 0.001 0.073 ± 0.001 Present work

48Ti+200Hg 248No 185.5 190.9 0 0.32 0.237 ± 0.025 0.090 ± 0.001 Present work
48Ti+208Pb 256Rf 190.9 194.4 2 0.35 0.121 ± 0.004 0.082 ± 0.001 Present work
44Ca+204Pb 248No 174.4 178.0 2 0.29 0.114 ± 0.002 0.081 ± 0.001 Present work
48Ca+204Pb 252No 172.4 175.8 3 0.09 0.084 ± 0.008 0.073 ± 0.004 Present work
40Ca+208Pb 248No 179.1 179.5 4 0.54 0.126 ± 0.004 0.083 ± 0.001 Present work
48Ca+208Pb 256No 177.1 175.0 4 0.14 0.068 ± 0.002 0.064 ± 0.002 From Ref. [27]

smaller QF probability. This interpretation is also supported

by the observation of relatively high fusion-evaporation cross-

sections (up to ∼ 3 µb) in the 48Ca+208Pb system as compared

to reactions with non-magic targets with similar masses [26].

Before accepting this conclusion, the possible effects of a

number of additional variables should be considered. The com-

parison of the widths is strictly valid for reactions forming

the same CN (here, the three reactions forming 248No), under

the same conditions. The known dependence of the standard

deviation σMR on excitation energy for these reactions is too

weak [14, 27], and the difference in energies too small (e.g., ex-

citation energies in 48Ti+200Hg and 44Ca+204Pb differ by only

0.4 MeV) for differences in excitation energy to affect the con-

clusions. The 48Ti+208Pb reaction has the largest entrance-

channel charge product, and forms the heaviest and most fissile

nucleus, thus without shell effects, the largest standard devia-

tion σMR might be expected. This is not what is observed, so

we conclude that the large changes in σMR must be related to

the differing magicity in the entrance channel, rather than prop-

erties of the composite system.

There is one reaction that does not follow the systematic be-

haviour shown by the others, namely 40Ca+208Pb. Fig. 2 shows

clearly that it demonstrates strong evidence for QF (σMR ≃

0.13), despite having maximal magicity Nm = 4. We propose an

explanation below which does not invalidate the link between

magicity and QF probability seen for the other reactions. To

solve this puzzle, it is sufficient to invoke the fast isospin equili-

bration resulting from nucleon transfer. Detailed measurements

of reaction product yields [31] and angular distributions [32]

have shown that systems with strong isospin asymmetry in the

entrance channel (like 40Ca+208Pb [32]) undergo a rapid (al-

though incomplete) isospin equilibration in the early stage of

the collision, through the transfer of nucleons [32].

The time-dependent Hartree-Fock (TDHF) theory has suc-

cessfully described transfer in N/Z asymmetric reactions (for

example Refs. [33, 34, 35, 36]). Here, it is used to investigate

the timescale of isospin equilibration via transfer. In TDHF,

each particle evolves independently in the mean-field generated

by all the others. The TDHF formalism is optimised for the pre-

diction of expectation values of one-body operators, such as the

average N/Z ratio in the fragments. The tdhf3d code is used

with the SLy4d parameterisation of the Skyrme functional [37].

The TDHF equation is solved iteratively in time, with a time

step ∆t = 1.5 × 10−24 s, on a spatial grid of 56 × 56 × 28/2

points with a plane of symmetry (the collision plane), and a

mesh size ∆x = 0.8 fm (see [38] for more details). The initial

distance between the nuclei is 22.4 fm.

The results of the TDHF calculations of N/Z equilibration

between two colliding nuclei are shown in Fig. 3, as a func-

tion of their contact time. The difference in the N/Z ratios of

the two nuclei before any transfer of nucleons is denoted by

∆(N/Z)i, shown by the full circles in Fig. 3, and also given in

Table 1. The curves show the calculated evolution of the differ-

ence between the N/Z ratios of the outgoing (final) fragments

(∆(N/Z) f ) for each reaction, as a function of contact time, de-

fined as the time during which the neck density exceeds half

the saturation density ρ0/2 = 0.08 fm−3. The contact time is

varied by making calculations at angular momentum L~ from

∼ 20~ to 70~. The energies of the collisions are the same as

in the experiment. For L < 20, most of the systems undergo

capture resulting in fusion, whose timescales are too long for

the TDHF calculations, or strongly damped collisions. For

the smallest contact times (associated with large L), the nu-

clei scatter (in)elastically and no change in isospin occurs (i.e.,

∆(N/Z) f ≃ ∆(N/Z)i) as seen in Fig. 3. For the 48Ca+204,208Pb

reactions, the initial isospin asymmetry is small, and no change

in isospin occurs with increasing contact times. The fact that,

for these reactions, ∆(N/Z) f never reaches zero is typical for

mass asymmetric reactions [39]. For the other reactions, as

the contact time increases, the ∆(N/Z) f approaches the same

isospin asymmetry. In particular the most N/Z asymmetric re-

action, 40Ca+208Pb undergoes a large reduction of ∆(N/Z) f , in

agreement with experiment [32]. Using a particle number pro-

jection technique [40], the most probable outcome for this re-

action after a contact time of ∼ 2.7 × 10−21 s (calculated for

L = 20), is found to be 42Ar+206Po. This calculation also

gives the probability of remaining in the entrance channel (and

thus of conserving its entrance channel magicity), which is

P∆Z=0P∆N=0 ≃ 0.083 × 0.002 ≃ 1.7 × 10−4, a negligible proba-

bility. However, for the 48Ca+208Pb reaction, even for a contact

time as long as ∼ 3.5 × 10−21 s (not shown in Fig 3), this prob-

ability is still 0.76 × 0.57 ≃ 0.43, giving a much larger survival

probability for the initial magic numbers in this reaction.

If the nucleons are transferred and the magicity is lost early in

the collision, the system should behave more like a non magic

system. On the contrary, if isospin equilibration takes place
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on a time scale similar to that of QF, then the magicity in the

entrance channel could still significantly enhance fusion. Ac-

cording to the TDHF calculations (Fig. 3), 40Ca+208Pb experi-

ences a high degree of isospin equilibration for sticking times

≤ 2 × 10−21 s. This is in agreement with experimental observa-

tions [32] of a high degree of N/Z equilibration in deep-inelastic

collisions before many nucleons have been exchanged. This

time has to be compared with the typical time scale for QF. Mi-

croscopic quantum theories cannot yet model such collisions

from first principles [41]. Thus, to obtain the QF time for the

reactions studied, MAD have been simulated using a classical

trajectory model [9]. MAD were calculated for three differ-

ent QF time distributions shown in the upper panels in Fig. 4,

whose mean times varied from 3.5×10−21 s to 14×10−21 s. The

calculated MADs corresponding to these mean times are shown

in the middle panels of Fig. 4, whilst the bottom panels show

the predicted mass ratio spectra. The shape of the experimen-

tal data (Fig. 1 right panel) is best reproduced with an average

time scale of 14×10−21 s, which is much longer than the time

for isospin equilibration. Isospin equilibration leading to loss of

magicity occurs early in the 40Ca+208Pb collision, which thus

may be expected to exhibit QF properties closer to non magic

systems. This is what is seen experimentally, as clearly shown

in Fig. 2.

Finally, let us note that previous measurements [6, 27, 42]

of excitation functions for capture reactions (including both

fusion-fission and quasi-fission processes) in 40,48Ca+208Pb

have shown different behaviours in the two systems. In par-

ticular, at sub-barrier energies, reactions induced by 40Ca were

found to produce larger capture cross-sections [42]. This in-

crease is consistent with our interpretation which is that this is

a result of positive Q-value transfer reactions associated with

N/Z equilibration in the 40Ca reactions.

To conclude, experimental MAD for reactions with small

isospin asymmetry show that magic numbers in the entrance

channel reduce quasi-fission and are thus expected to increase

the probability for fusion, while non magic systems show more

quasi-fission. With a large initial isospin asymmetry, a rapid

N/Z equilibration occurs in the early stage of the reaction, mod-

ifying the identities of the collision partners. This is the case for
40Ca+208Pb, which, as far as the competition between fusion

and quasi-fission is concerned, behaves more like a non magic

system, i.e., with increased quasi-fission. Reactions with the

neutron-rich 48Ca on heavy targets usually have small isospin

asymmetry, and thus are more favourable to fusion than reac-

tions with 40Ca, as well as leading to more neutron-rich com-

pound nuclei having a higher probability of surviving fusion-

fission. The importance of isospin asymmetry in the entrance

channel should be considered in planning fusion experiments

with exotic beams to form and study new isotopes of existing

elements, as well as new super-heavy elements.

The authors are grateful to N. Rowley for a careful reading of

the manuscript and for insightful comments. N. Lobanov and

D. C. Weisser are thanked for intensive ion source development.

The TDHF calculations were performed on the NCI National

Facility in Canberra, supported by the Commonwealth Govern-

ment. Support from ARC Discovery grants DP06644077 and

5



DP110102858 is acknowledged.

[1] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).

[2] K. Morita, et al., J. Phys. Soc. Jpn. 76, 043201 (2007).

[3] Y. T. Oganessian, et al., Phys. Rev. C 74, 044602 (2006).

[4] S. Hofmann, et al., Eur. Phys. J. A 32, 251 (2007).

[5] R. Eichler, et al., Nature 447, 72 (2007).

[6] R. Bock, et al., Nucl. Phys. A 388, 334 (1982).

[7] J. Toke, et al., Nucl. Phys. A 440, 327 (1985).

[8] W. Q. Shen, et al., Phys. Rev. C 36, 115 (1987).

[9] R. du Rietz, et al., Phys. Rev. Lett. 106, 052701 (2011).

[10] J. U. Andersen, et al., Phys. Rev. Lett. 99, 162502 (2007).

[11] D. J. Hinde and M. Dasgupta, Phys. Lett. B 622, 23 (2005).

[12] D. J. Hinde, et al., Phys. Rev. Lett. 74, 1295 (1995).

[13] Z. Liu, et al., Phys. Lett. B 353, 173 (1995).

[14] D. J. Hinde, et al., Phys. Rev. C 53, 1290 (1996).

[15] Y. T. Oganessian, et al., Phys. Rev. C 70, 064609 (2004).

[16] G. N. Knyazheva, et al., Phys. Rev. C 75, 064602 (2007).

[17] D. J. Hinde, et al., Phys. Rev. Lett. 100, 202701 (2008).

[18] K. Nishio, et al., Phys. Rev. C 77, 064607 (2008).

[19] A. Sandulescu, et al., Phys. Lett. B 60, 225 (1976).

[20] Raj K. Gupta, et al., Z. Naturforschung 32a, 704 (1977).

[21] G. Fazio, et al., Phys. Rev. C 72, 064614 (2005).

[22] Y. Aritomo, Nucl. Phys. A 780, 222 (2006).

[23] P. Armbruster, Annu. Rev. Nucl. Part. Sci. 50, 411 (2000).

[24] R. G. Thomas, et al., Phys. Rev. C 77, 034610 (2008).

[25] B. B. Back, et al., Phys. Rev. C 53, 1734 (1996).
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