1,418 research outputs found

    UNCERTAINTY ANALYSIS OF SHIP MODEL RESISTANCE TEST IN ACTUAL SEAS

    Get PDF
    Resistance test is a classical method used to study ship performance. In this study, the uncertainty of large-scale ship model resistance test in actual seas is analyzed. Considering the difference between these trials and traditional test in towing tanks, this study first uses the ITTC 2014 procedure based on GUM to calculate the systematic error in the test. The parameters that affect the test accuracy are also estimated. Then, the program based on the Monte Carlo method is verified, and the differences between the two methods are compared. In this study, the uncertainty sources in the test are quantitatively analyzed, and the results will be helpful for improving the ship model test scheme in actual seas

    Synthesis and Stoichiometry of MgB2

    Full text link
    The system MgxB2 has been investigated to investigate possible nonstoichiometry in MgB2. When synthesized at 850oC, MgB2 is a line compound with a possible Mg vacancy content of about 1%. Small changes in lattice constants as a function of starting composition result from grain interaction stresses, whose character is different in the Mg-rich, near-stoichiometric, and Mg-deficient regimes. A small linear decrease of the superconducting transition temperature, Tc, in the Mg-rich regime results from accidental impurity doping.Comment: Accepted for publication in Physica C. 24 pages, 7 figure

    Large oxygen-isotope effect in Sr_{0.4}K_{0.6}BiO_{3}: Evidence for phonon-mediated superconductivity

    Full text link
    Oxygen-isotope effect has been investigated in a recently discovered superconductor Sr_{0.4}K_{0.6}BiO_{3}. This compound has a distorted perovskite structure and becomes superconducting at about 12 K. Upon replacing ^{16}O with ^{18}O by 60-80%, the T_c of the sample is shifted down by 0.32-0.50 K, corresponding to an isotope exponent of alpha_{O} = 0.40(5). This isotope exponent is very close to that for a similar bismuthate superconductor Ba_{1-x}K_{x}BiO_{3} with T_c = 30 K. The very distinctive doping and T_c dependencies of alpha_{O} observed in bismuthates and cuprates suggest that bismuthates should belong to conventional phonon-mediated superconductors while cuprates might be unconventional supercondutors.Comment: 9 pages, 5 figure

    On the effects of using CO2 and F2 lasers to modify the wettability of a polymeric biomaterial.

    Get PDF
    Enhancement of the surface properties of a material by means of laser radiation has been amply demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was done by producing 50 ÎŒm spaced (with depths between 1 and 10 ÎŒm) trench-like patterns using various laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer laser. Topographical changes were analysed using optical microscopy and white light interferometry which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and x-ray photoelectron spectroscopy analysis and showed that the O2 increased by up to 1.5% At. and decreased by up to 1.6% At. for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability characteristics was quantified by measuring the advancing contact angle, which was found to increase in all instances for both laser systems. Emery paper roughened samples were also analysed in the same manner to determine that the topographical pattern played a major role in the wettability characteristics of nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by the laser induced trench-like topographical patterns

    Integer quantum Hall effect for hard-core bosons and a failure of bosonic Chern-Simons mean-field theories for electrons at half-filled Landau level

    Get PDF
    Field-theoretical methods have been shown to be useful in constructing simple effective theories for two-dimensional (2D) systems. These effective theories are usually studied by perturbing around a mean-field approximation, so the question whether such an approximation is meaningful arises immediately. We here study 2D interacting electrons in a half-filled Landau level mapped onto interacting hard-core bosons in a magnetic field. We argue that an interacting hard-core boson system in a uniform external field such that there is one flux quantum per particle (unit filling) exhibits an integer quantum Hall effect. As a consequence, the mean-field approximation for mapping electrons at half-filling to a boson system at integer filling fails.Comment: 13 pages latex with revtex. To be published in Phys. Rev.

    Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states

    Full text link
    In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.

    High-Performance Transactional Event Processing

    Get PDF
    Abstract. This paper presents a transactional framework for low-latency, high-performance, concurrent event processing in Java. At the heart of our framework lies Reflexes, a restricted programming model for highly responsive systems. A Reflex task is an event processor that can run at a higher priority and preempt any other Java thread, including the garbage collector. It runs in an obstruction-free manner with time-oblivious code. We extend Reflexes with a publish/subscribe communication system, itself based on an optimistic transactional event processing scheme, that provides efficient coordination between time-critical, low-latency tasks.We report on the comparison with a commercial JVM, and show that it is possible for tasks to achieve 50 ”s response times with way less than 1% of the executions failing to meet their deadlines.

    Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric

    Full text link
    In case of spacetimes with single horizon, there exist several well-established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.Comment: 12 page

    Geometrothermodynamics of five dimensional black holes in Einstein-Gauss-Bonnet-theory

    Full text link
    We investigate the thermodynamic properties of 5D static and spherically symmetric black holes in (i) Einstein-Maxwell-Gauss-Bonnet theory, (ii) Einstein-Maxwell-Gauss-Bonnet theory with negative cosmological constant, and in (iii) Einstein-Yang-Mills-Gauss-Bonnet theory. To formulate the thermodynamics of these black holes we use the Bekenstein-Hawking entropy relation and, alternatively, a modified entropy formula which follows from the first law of thermodynamics of black holes. The results of both approaches are not equivalent. Using the formalism of geometrothermodynamics, we introduce in the manifold of equilibrium states a Legendre invariant metric for each black hole and for each thermodynamic approach, and show that the thermodynamic curvature diverges at those points where the temperature vanishes and the heat capacity diverges.Comment: New sections added, references adde
    • 

    corecore