1,173 research outputs found

    A remark on interacting anyons in magnetic field

    Full text link
    In this remark, we note that the anyons, interacting with each other through pairwise potential in external magnetic field, exhibit a simple quantum group symmetry.Comment: IPT-EPFL preprint, typos fixed, minor corrections, references updated, submitted to Physics Letter A

    Dual Time-Point 18F-FDG PET/CT in Spinal Sarcoidosis: A Single Institution Case Series

    Get PDF
    Study Design.A case series of dual time-point 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) for the diagnosis of spinal cord sarcoidosis.Objective.The aim of this study was to illustrate three cases of spinal sarcoidosis with occult presentation and subsequent identification with the use of dual time-point 18F-FDG PET/CT.Summary of Background Data.Sarcoidosis of the spinal cord is very rare and when it occurs without systemic manifestations of disease can be a challenging diagnostic dilemma frequently resulting in the need for spinal cord biopsy in order to establish a diagnosis.Methods.Case series presentation and report.Results.This manuscript presents a case series experience of dual time-point 18F-FDG PET/CT for the diagnosis of spinal cord sarcoidosis. We review the cases of three patients who presented with myelopathy and underwent 18F-FDG DTPI as part of the evaluation for enhancing spinal cord lesions of unknown etiology for 2 years at a university-based cancer hospital. 18F-FDG DTPI was vital in making the diagnosis of sarcoidosis, and in two of the cases, the patients were able to avoid biopsy, thereby avoiding potential morbidity from an invasive procedure.Conclusion.18F-FDG PET/CT imaging is a noninvasive imaging technique that can be crucial in the diagnosis of sarcoidosis of the spinal cord and help avoid unnecessary procedures.Level of Evidence: 4. © 2019 Wolters Kluwer Health, Inc. All rights reserved

    Guidance for Restarting Inflammatory Bowel Disease Therapy in Patients Who Withheld Immunosuppressant Medications During COVID-19

    Get PDF
    Patients with inflammatory bowel diseases [IBD] are frequently treated with immunosuppressant medications. During the coronavirus disease 2019 [COVID-19] pandemic, recommendations for IBD management have included that patients should stay on their immunosuppressant medications if they are not infected with the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], but to temporarily hold these medications if symptomatic with COVID-19 or asymptomatic but have tested positive for SARS-CoV-2. As more IBD patients are infected globally, it is important to also understand how to manage IBD medications during convalescence while an individual with IBD is recovering from COVID-19. In this review, we address the differences between a test-based versus a symptoms-based strategy as related to COVID-19, and offer recommendations on when it is appropriate to consider restarting IBD therapy in patients testing positive for SARS-CoV-2 or with clinical symptoms consistent with COVID-19. In general, we recommend a symptoms-based approach, due to the current lack of confidence in the accuracy of available testing and the clinical significance of prolonged detection of virus via molecular testing

    Induced Parity Nonconserving Interaction and Enhancement of Two-Nucleon Parity Nonconserving Forces

    Get PDF
    Two-nucleon parity nonconserving (PNC) interaction induced by the single-particle PNC weak potential and the two-nucleon residual strong interaction is considered. An approximate analytical formula for this Induced PNC Interaction (IPNCI) between proton and neutron is derived (Q(rσp×σn)δ(rp−rn)Q({\bf r} {\bf \sigma}_{p} \times {\bf \sigma}_{n}) \delta({\bf r}_{p}-{\bf r}_{n})), and the interaction constant is estimated. As a result of coherent contributions from the nucleons to the PNC potential, IPNCI is an order of magnitude stronger (∼A1/3\sim A^{1/3}) than the residual weak two-nucleon interaction and has a different coordinate and isotopic structure (e.g., the strongest part of IPNCI does not contribute to the PNC mean field). IPNCI plays an important role in the formation of PNC effects, e.g., in neutron-nucleus reactions. In that case, it is a technical way to take into account the contribution of the distant (small) components of a compound state which dominates the result. The absence of such enhancement (∼A1/3\sim A^{1/3}) in the case of T- and P-odd interaction completes the picture.Comment: Phys. Rev. C, to appear; 17 pages, revtex 3, no figure

    Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    Get PDF
    In light of new data on neutron distributions from experiments with antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to ``new physics'' beyond the standard model. We compare possible constraints on ``new physics'' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < 50 may result in more accurate tests of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.

    Expression of human apolipoprotein B100 in transgenic mice. Editing of human apolipoprotein B100 mRNA

    Get PDF
    Apolipoprotein B (apoB) is a large glycoprotein that circulates in plasma as a major constituent of numerous lipoproteins. ApoB exists in two forms: apoB48 and apoB100. ApoB48 is identical in sequence to the N-terminal region of apoB100 and is generated by sequence-specific mRNA editing of the apoB100 transcript. Here, we describe the development of a line of mice expressing a human apoB transgene driven by promoter/enhancer sequences from the transthyretin gene. In these mice, immunodetectable human apoB100 is synthesized by the liver, kidney, and brain. Human apoB100 is found in low concentration (approximately 0.1 mg/dl) in the plasma of the transgenic mice and circulates in the low density lipoprotein fraction. The hepatic human apoB100 transcripts undergo mRNA editing at only slightly lower efficiency than the endogenous mouse apoB100 message. Therefore, there is no absolute species specificity to the apoB100 mRNA editing process
    • …
    corecore