147 research outputs found

    Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate

    Full text link
    We study the system of coupled atomic and molecular condensates within the two-mode model and beyond mean-field theory (MFT). Large amplitude atom-molecule coherent oscillations are shown to be damped by the rapid growth of fluctuations near the dynamically unstable molecular mode. This result contradicts earlier predictions about the recovery of atom-molecule oscillations in the two-mode limit. The frequency of the damped oscillation is also shown to scale as N/logN\sqrt{N}/\log N with the total number of atoms NN, rather than the expected pure N\sqrt{N} scaling. Using a linearized model, we obtain analytical expressions for the initial depletion of the molecular condensate in the vicinity of the instability, and show that the important effect neglected by mean field theory is an initially non-exponential `spontaneous' dissociation into the atomic vacuum. Starting with a small population in the atomic mode, the initial dissociation rate is sensitive to the exact atomic amplitudes, with the fastest (super-exponential) rate observed for the entangled state, formed by spontaneous dissociation.Comment: LaTeX, 5 pages, 3 PostScript figures, uses REVTeX and epsfig, submitted to Physical Review A, Rapid Communication

    On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory

    Full text link
    We study the nature of the confinement phase transition in d=3+1 dimensions in various non-abelian gauge theories with the approach put forward in [1]. We compute an order-parameter potential associated with the Polyakov loop from the knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. We find that it is weaker than for SU(N). We show that this can be understood in terms of the eigenvalue distribution of the order parameter potential close to the phase transition.Comment: 15 page

    Variable length-based genetic representation to automatically evolve wrappers

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-12433-4_44Proceedings 8th International Conference on Practical Applications of Agents and Multiagent SystemsThe Web has been the star service on the Internet, however the outsized information available and its decentralized nature has originated an intrinsic difficulty to locate, extract and compose information. An automatic approach is required to handle with this huge amount of data. In this paper we present a machine learning algorithm based on Genetic Algorithms which generates a set of complex wrappers, able to extract information from theWeb. The paper presents the experimental evaluation of these wrappers over a set of basic data sets.This work has been partially supported by the Spanish Ministry of Science and Innovation under the projects Castilla-La Mancha project PEII09-0266-6640, COMPUBIODIVE (TIN2007-65989), and by V-LeaF (TIN2008-02729-E/TIN)

    The steady state quantum statistics of a non-Markovian atom laser

    Full text link
    We present a fully quantum mechanical treatment of a single-mode atomic cavity with a pumping mechanism and an output coupling to a continuum of external modes. This system is a schematic description of an atom laser. In the dilute limit where atom-atom interactions are negligible, we have been able to solve this model without making the Born and Markov approximations. When coupling into free space, it is shown that for reasonable parameters there is a bound state which does not disperse, which means that there is no steady state. This bound state does not exist when gravity is included, and in that case the system reaches a steady state. We develop equations of motion for the two-time correlation in the presence of pumping and gravity in the output modes. We then calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure

    A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship

    Get PDF
    Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship

    Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems

    Full text link
    We extend quantum kinetic theory to deal with a strongly Bose-condensed atomic vapor in a trap. The method assumes that the majority of the vapor is not condensed, and acts as a bath of heat and atoms for the condensate. The condensate is described by the particle number conserving Bogoliubov method developed by one of the authors. We derive equations which describe the fluctuations of particle number and phase, and the growth of the Bose-Einstein condensate. The equilibrium state of the condensate is a mixture of states with different numbers of particles and quasiparticles. It is not a quantum superposition of states with different numbers of particles---nevertheless, the stationary state exhibits the property of off-diagonal long range order, to the extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review

    A mitochondrial half-size ABC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii

    Full text link
    Five cadmium-sensitive insertional mutants, all affected at the CDS1 ('cadmium-sensitive 1') locus, have been previously isolated in the unicellular green alga Chlamydomonas reinhardtii. We here describe the cloning of the Cds1 gene (8314 bp with 26 introns) and the corresponding cDNA. The Cds1 gene, strongly induced by cadmium, encodes a putative protein (CrCds1) of 1062 amino acid residues that belongs to the ATM/HMT subfamily of half-size ABC transporters. This subfamily includes both vacuolar HMT-type proteins transporting phytochelatin-cadmium complexes from the cytoplasm to the vacuole and mitochondrial ATM-type proteins involved in the maturation of cytosolic Fe/S proteins. Unlike the Delta sphmt1 cadmium-sensitive mutant of Schizosaccharomyces pombe that lacks a vacuolar HMT-type transporter, the cds1 mutant accumulates a high amount of phytochelatin-cadmium complexes. By epitope tagging, the CrCds1 protein was localized in the mitochondria. Even though mitochondria of cds1 do not accumulate important amounts of 'free' iron, the mutant cells are hypersensitive to high iron concentrations. Our data show for the first time that a mitochondrial ATM-like transporter plays a major role in tolerance to cadmium.Peer reviewe

    Making Sense Through Participation

    Get PDF
    In this chapter we discuss the issue of social differences in relation to learning. In theories on co-operative learning or collaborative learning social differences are treated as characteristics of individual learners. The focus on learning as a social process is primarily elaborated in terms of interaction between pupils and the combined construction of knowledge. Sociocultural theory (Vygotsky, Lave & Wenger), however, understands ‘social’ not only in terms of knowledge/meaning being constructed in interaction with others, but also in terms of the cultural practices/activities informing these interaction processes. Learning can be understood as increasing participating in communities of practice. As social differences are an intrinsic part of the culture in which students are learning to participate, these are also an inherent aspect of learning processes in schools. Students learn to participate in practices in different ways, depending on their social position, and thus develop distinguished cultural identities. In this chapter we elaborate on this tenet, using examples from various empirical research projects on learning in secondary education. We not only show how social differences in the cultural practices that underpin learning influence what is learned by whom, but also explore the consequences of this perspective for the pedagogical space of the school

    IMG 305 - PEMBUNGKUSAN MAKANAN NOV.05.

    Get PDF
    We discuss the use of Agent-based Modelling for the development and testing of theories about emergent social phenomena in marketing and the social sciences in general. We address both theoretical aspects about the types of phenomena that are suitably addressed with this approach and practical guidelines to help plan and structure the development of a theory about the causes of such a phenomenon in conjunction with a matching ABM. We argue that research about complex social phenomena is still largely fundamental research and therefore an iterative and cyclical development process of both theory and model is to be expected. To better anticipate and manage this process, we provide theoretical and practical guidelines. These may help to identify and structure the domain of candidate explanations for a social phenomenon, and furthermore assist the process of model implementation and subsequent development. The main goal of this paper was to make research on complex social systems more accessible and help anticipate and structure the research process
    corecore