301 research outputs found

    Combining Litter Observations with a Regional Ocean Model to Identify Sources and Sinks of Floating Debris in a Semi-enclosed Basin: The Adriatic Sea

    Get PDF
    Visual ship transect surveys provide crucial information about the density, and spatial distribution of floating anthropogenic litter in a basin. However, such observations provide a ‘snapshot’ of local conditions at a given time and cannot be used to deduce the provenance of the litter or to predict its fate, crucial information for management and mitigation policies. Particle tracking techniques have seen extensive use in these roles, however, most previous studies have used simplistic initial conditions based on bulk average inputs of debris to the system. Here, observations of floating anthropogenic macro debris in the Adriatic Sea are used to define initial conditions (number of particles, location, and time) in a Lagrangian particle tracking model. Particles are advected backward and forward in time for 60 days (120 days total) using surface velocities from an operational regional ocean model. Sources and sinks for debris observed in the central and southern Adriatic in May 2013 and March 2015 included the Italian coastline from Pescara to Brindisi, the Croatian island of Mljet, and the coastline from Dubrovnik through Montenegro to Albania. Debris observed in the northern Adriatic originated from the Istrian peninsula to the Italian city of Termoli, as well as the Croatian island of Cres and the Kornati archipelago. Particles spent a total of roughly 47 days afloat. Coastal currents, notably the eastern and western Adriatic currents, resulted in large alongshore displacements. Our results indicate that anthropogenic macro debris originates largely from coastal sources near population centers and is advected by the cyclonic surface circulation until it strands on the southwest (Italian) coast, exits the Adriatic, or recirculates in the southern gyreVersión del edito

    Breaking CPT by mixed non-commutativity

    Get PDF
    The mixed component of the non-commutative parameter \theta_{\mu M}, where \mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu 5} with the four-dimensional axial vector current and with the CPT odd dim=6 operators starting from five-dimensional Yukawa and U(1) theories. The resulting bounds from clock comparison experiments place a stringent constraint on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold projection and/or localization of fermions on a 3-brane lead to CPT-conserving physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur

    Theory of parity violation in compound nuclear states; one particle aspects

    Full text link
    In this work we formulate the reaction theory of parity violation in compound nuclear states using Feshbach's projection operator formalism. We derive in this framework a complete set of terms that contribute to the longitudinal asymmetry measured in experiments with polarized epithermal neutrons. We also discuss the parity violating spreading width resulting from this formalism. We then use the above formalism to derive expressions which hold in the case when the doorway state approximation is introduced. In applying the theory we limit ourselves in this work to the case when the parity violating potential and the strong interaction are one-body. In this approximation, using as the doorway the giant spin-dipole resonance and employing well known optical potentials and a time-reversal even, parity odd one-body interaction we calculate or estimate the terms we derived. In our calculations we explicitly orthogonalize the continuum and bound wave functions. We find the effects of orthogonalization to be very important. Our conclusion is that the present one-body theory cannot explain the average longitudinal asymmetry found in the recent polarized neutron experiments. We also confirm the discrepancy, first pointed out by Auerbach and Bowman, that emerges, between the calculated average asymmetry and the parity violating spreading width, when distant doorways are used in the theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from the authors

    Complete solutions to the metric of spherically collapsing dust in an expanding spacetime with a cosmological constant

    Get PDF
    We present semi-analytical solutions to the background equations describing the Lema\^itre-Tolman-Bondi (LTB) metric as well as the homogeneous Friedmann equations, in the presence of dust, curvature and a cosmological constant Lambda. For none of the presented solutions any numerical integration has to be performed. All presented solutions are given for expanding and collapsing phases, preserving continuity in time and radius. Hence, these solutions describe the complete space time of a collapsing spherical object in an expanding universe. In the appendix we present for completeness a solution of the Friedmann equations in the additional presence of radiation, only valid for the Robertson-Walker metric.Comment: 23 pages, one figure. Numerical module for evaluation of the solutions released at http://web.physik.rwth-aachen.de/download/valkenburg/ColLambda/ Matches published version, published under Open Access. Note change of titl

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Probing Lorentz and CPT violation with space-based experiments

    Get PDF
    Space-based experiments offer sensitivity to numerous unmeasured effects involving Lorentz and CPT violation. We provide a classification of clock sensitivities and present explicit expressions for time variations arising in such experiments from nonzero coefficients in the Lorentz- and CPT-violating Standard-Model Extension.Comment: 15 page

    Threshold analyses and Lorentz violation

    Full text link
    In the context of threshold investigations of Lorentz violation, we discuss the fundamental principle of coordinate invariance, the role of an effective dynamical framework, and the conditions of positivity and causality. Our analysis excludes a variety of previously considered Lorentz-breaking parameters and opens an avenue for viable dispersion-relation investigations of Lorentz violation.Comment: 9 page

    Signals for Lorentz Violation in Electrodynamics

    Get PDF
    An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional properties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of light produced by galactic and extragalactic objects provide bounds of 3 x 10^{-16} on certain coefficients for Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically distant sources yields stringent constraints of 2 x 10^{-32}. All remaining coefficients in the photon sector are measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be implemented using existing technology.Comment: 23 pages REVTe

    Lorentz and CPT Violation in Neutrinos

    Get PDF
    A general formalism is presented for violations of Lorentz and CPT symmetry in the neutrino sector. The effective hamiltonian for neutrino propagation in the presence of Lorentz and CPT violation is derived, and its properties are studied. Possible definitive signals in existing and future neutrino-oscillation experiments are discussed. Among the predictions are direction-dependent effects, including neutrino-antineutrino mixing, sidereal and annual variations, and compass asymmetries. Other consequences of Lorentz and CPT violation involve unconventional energy dependences in oscillation lengths and mixing angles. A variety of simple models both with and without neutrino masses are developed to illustrate key physical effects. The attainable sensitivities to coefficients for Lorentz violation in the Standard-Model Extension are estimated for various types of experiments. Many experiments have potential sensitivity to Planck-suppressed effects, comparable to the best tests in other sectors. The lack of existing experimental constraints, the wide range of available coefficient space, and the variety of novel effects imply that some or perhaps even all of the existing data on neutrino oscillations might be due to Lorentz and CPT violation.Comment: 25 pages REVTe
    corecore