2 research outputs found

    Stepped fans and facies-equivalent phyllosilicates in Coprates Catena, Mars

    Get PDF
    Stepped fan deposits and phyllosilicate mineralogies are relatively common features on Mars but have not previously been found in association with each other. Both of these features are widely accepted to be the result of aqueous processes, but the assumed role and nature of any water varies. In this study we have investigated two stepped fan deposits in Coprates Catena, Mars, which have a genetic link to light-toned material that is rich in Fe–Mg phyllosilicate phases. Although of different sizes and in separate, but adjacent, trough-like depressions, we identify similar features at these stepped fans and phyllosilicates that are indicative of similar formation conditions and processes. Our observations of the overall geomorphology, mineralogy and chronology of these features are consistent with a two stage formation process, whereby deposition in the troughs first occurs into shallow standing water or playas, forming fluvial or alluvial fans that terminate in delta deposits and interfinger with interpreted lacustrine facies, with a later period of deposition under sub-aerial conditions, forming alluvial fan deposits. We suggest that the distinctive stepped appearance of these fans is the result of aeolian erosion, and is not a primary depositional feature. This combined formation framework for stepped fans and phyllosilicates can also explain other similar features on Mars, and adds to the growing evidence of fluvial activity in the equatorial region of Mars during the Hesperian and Amazonian

    Squeezing river catchments through tectonics: Shortening and erosion across the Indus Valley, NW Himalaya

    Get PDF
    Tectonic displacement of drainage divides and the consequent deformation of river networks during crustal shortening have been proposed for a number of mountain ranges, but never tested. In order to preserve crustal strain in surface topography, surface displacements across thrust faults must be retained without being recovered by consequent erosion. Quantification of these competing processes and the implications for catchment topography have not previously been demonstrated. Here, we use structural mapping combined with dating of terrace sediments to measure Quaternary shortening across the Indus River valley in Ladakh, NW Himalaya. We demonstrate ~0.21 m k.y.–1 of horizontal displacement since ca. 45 ka on the Stok thrust in Ladakh, which defines the southwestern margin of the Indus Valley catchment and is the major back thrust to the Tethyan Himalaya in this region. We use normalized river channel gradients of the tributaries that drain into the Indus River to show that the lateral continuation of the Stok thrust was active for at least 70 km along strike. Shortening rates combined with fault geometries yield vertical displacement rates that are compared to time-equivalent erosion rates in the hanging wall derived from published detrital 10Be analyses. The results demonstrate that vertical displacement rates across the Stok thrust were approximately twice that of the time-equivalent erosion rates, implying a net horizontal displacement of the surface topography, and hence narrowing of the Indus Valley at ~0.1 m k.y.–1. A fill terrace records debris-flow emplacement linked to thrust activity, resulting in damming of the valley and extensive lake development. Conglomerates beneath some of the modern alluvial fans indicate a northeastward shift of the Indus River channel since ca. 45 ka to its present course against the opposite side of the valley from the Stok thrust. The integration of structural, topographic, erosional, and sedimentological data provides the first demonstration of the tectonic convergence of drainage divides in a mountain range and yields a model of the surface processes involved
    corecore