1,319 research outputs found

    Spatial correlators in strongly coupled plasmas

    Full text link
    We numerically calculate the spatial correlators of the scalar and pseudoscalar operators F2F^2 and FF~F\tilde F, in SU(3) Yang-Mills theory at zero and finite-temperature on the lattice. We compare the results over the distances 12T<r<32T\frac{1}{2T}<r<\frac{3}{2T} to the free-field prediction, to the operator-product expansion as well as to the strongly coupled large-NcN_c \sN=4 super-Yang-Mills theory, where results are obtained by AdS/CFT methods. For Tc<T<1.15TcT_c<T<1.15T_c, both channels exhibit stronger spatial correlations than in the vacuum, and we give an explanation for this, using sum-rules and the operator-product expansion. The AdS/CFT calculation provides a semi-quantitatively successful description of the vacuum-subtracted F2F^2 correlator, renormalized in the 3-loop MS‾\overline{\rm MS} scheme, in the interval of temperatures 1.2<T/Tc<1.91.2<T/T_c<1.9, while the free-field prediction has the wrong sign. The FF~F\tilde F and F2F^2 correlators are predicted to have the same functional form both at weak coupling and in the strongly coupled SYM theory. The Yang-Mills plasma does not meet that expectation below 2Tc2T_c. Instead we find that strong fluctuations of FF~F\tilde F are present at least up to that temperature. We discuss the impact of our results on our understanding of the quark-gluon plasma.Comment: 32 pages, 9 figures, 4 tables; added some references, more detailed captions, conclusions unchange

    Linearly bounded infinite graphs

    Get PDF
    Linearly bounded Turing machines have been mainly studied as acceptors for context-sensitive languages. We define a natural class of infinite automata representing their observable computational behavior, called linearly bounded graphs. These automata naturally accept the same languages as the linearly bounded machines defining them. We present some of their structural properties as well as alternative characterizations in terms of rewriting systems and context-sensitive transductions. Finally, we compare these graphs to rational graphs, which are another class of automata accepting the context-sensitive languages, and prove that in the bounded-degree case, rational graphs are a strict sub-class of linearly bounded graphs

    Neutrino masses in the Lepton Number Violating MSSM

    Full text link
    We consider the most general supersymmetric model with minimal particle content and an additional discrete Z_3 symmetry (instead of R-parity), which allows lepton number violating terms and results in non-zero Majorana neutrino masses. We investigate whether the currently measured values for lepton masses and mixing can be reproduced. We set up a framework in which Lagrangian parameters can be initialised without recourse to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or intergenerational mixing and analyse in detail the one loop corrections to the neutrino masses. We present scenarios in which the experimental data are reproduced and show the effect varying lepton number violating couplings has on the predicted atmospheric and solar mass^2 differences. We find that with bilinear lepton number violating couplings in the superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass scale. Further details of our calculation, Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published versio

    Accessing transversity with interference fragmentation functions

    Full text link
    We discuss in detail the option to access the transversity distribution function h1(x)h_1(x) by utilizing the analyzing power of interference fragmentation functions in two-pion production inside the same current jet. The transverse polarization of the fragmenting quark is related to the transverse component of the relative momentum of the hadron pair via a new azimuthal angle. As a specific example, we spell out thoroughly the way to extract h1(x)h_1(x) from a measured single spin asymmetry in two-pion inclusive lepton-nucleon scattering. To estimate the sizes of observable effects we employ a spectator model for the fragmentation functions. The resulting asymmetry of our example is discussed as arising in different scenarios for the transversity.Comment: 17 pages, 15 figures in .eps format included, typesetted in RevTeX and epsfig.sty, submitted to Phys. Rev.

    Total Cross Section for p+p → p+p+pi0 Close to Threshold

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Highly analysable, reusable, and realisable architectural designs with XCD

    Get PDF
    Connector-Centric Design (XcD) is a new approach to specifying software architectures. XcD views complex connectors as highly significant in architectural designs, as it is the complex connectors that non-functional quality properties in systems can emanate from. So, XcD promotes in designs a clean separation of connectors (interaction behaviours) from components (functional behaviours). Designers can then specify connectors in detail explicitly thus easing the analysis of system designs for quality properties. Furthermore, XcD separates control behaviour from connectors as control strategies. Architectural designs in XcD thus become highly modular with re-usable components, connectors, and control strategies (representing design solutions for quality properties). The end result is the eased architectural experimentation with different design solutions by re-using components/connectors and formal analysis of these solutions to find out the optimal ones

    Parton energy loss at strong coupling and the universal bound

    Full text link
    The apparent universality of jet quenching observed in heavy ion collisions at RHIC for light and heavy quarks, as well as for quarks and gluons, is very puzzling and calls for a theoretical explanation. Recently it has been proposed that the synchrotron--like radiation at strong coupling gives rise to a universal bound on the energy of a parton escaping from the medium. Since this bound appears quite low, almost all of the observed particles at high transverse momentum have to originate from the surface of the hot fireball. Here I make a first attempt of checking this scenario against the RHIC data and formulate a "Universal Bound Model" of jet quenching that can be further tested at RHIC and LHC.Comment: 8 pages, 2 figures, invited plenary talk given at "Hard Probes 2008" Conference, 8-14 June 2008, Illa da Toxa, Galicia, Spai

    The Importance of Time Congruity in the Organisation.

    Get PDF
    In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research

    Photo-production of Nucleon Resonances and Nucleon Spin Structure Function in the Resonance Region

    Get PDF
    The photo-production of nucleon resonances is calculated based on a chiral constituent quark model including both relativistic corrections H{rel} and two-body exchange currents, and it is shown that these effects play an important role. We also calculate the first moment of the nucleon spin structure function g1 (x,Q^2) in the resonance region, and obtain a sign-changing point around Q^2 ~ 0.27 {GeV}^2 for the proton.Comment: 23 pages, 5 figure

    Partially Annealed Disorder and Collapse of Like-Charged Macroions

    Full text link
    Charged systems with partially annealed charge disorder are investigated using field-theoretic and replica methods. Charge disorder is assumed to be confined to macroion surfaces surrounded by a cloud of mobile neutralizing counterions in an aqueous solvent. A general formalism is developed by assuming that the disorder is partially annealed (with purely annealed and purely quenched disorder included as special cases), i.e., we assume in general that the disorder undergoes a slow dynamics relative to fast-relaxing counterions making it possible thus to study the stationary-state properties of the system using methods similar to those available in equilibrium statistical mechanics. By focusing on the specific case of two planar surfaces of equal mean surface charge and disorder variance, it is shown that partial annealing of the quenched disorder leads to renormalization of the mean surface charge density and thus a reduction of the inter-plate repulsion on the mean-field or weak-coupling level. In the strong-coupling limit, charge disorder induces a long-range attraction resulting in a continuous disorder-driven collapse transition for the two surfaces as the disorder variance exceeds a threshold value. Disorder annealing further enhances the attraction and, in the limit of low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure
    • …
    corecore