80 research outputs found

    The No-Triangle Hypothesis for N=8 Supergravity

    Get PDF
    We study the perturbative expansion of N=8 supergravity in four dimensions from the viewpoint of the ``no-triangle'' hypothesis, which states that one-loop graviton amplitudes in N=8 supergravity only contain scalar box integral functions. Our computations constitute a direct proof at six-points and support the no-triangle conjecture for seven-point amplitudes and beyond.Comment: 43page

    Efficient analytic computation of higher-order QCD amplitudes

    Get PDF
    URL: http://www-spht.cea.fr/articles/t95/026/ Le calcul analytique efficace des amplitudes aux ordres supérieurs en QCDWe review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints

    Infrared behavior of graviton-graviton scattering

    Get PDF
    The quantum effective theory of general relativity, independent of the eventual full theory at high energy, expresses graviton-graviton scattering at one loop order O(E^4) with only one parameter, Newton's constant. Dunbar and Norridge have calculated the one loop amplitude using string based techniques. We complete the calculation by showing that the 1/(d-4) divergence which remains in their result comes from the infrared sector and that the cross section is finite and model independent when the usual bremsstrahlung diagrams are included.Comment: 12 pages, uses axodra

    MHV-Vertices for Gravity Amplitudes

    Full text link
    We obtain a CSW-style formalism for calculating graviton scattering amplitudes and prove its validity through the use of a special type of BCFW-like parameter shift. The procedure is illustrated with explicit examples.Comment: 21 pages, minor typos corrected, proof added in section

    Inherited Twistor-Space Structure of Gravity Loop Amplitudes

    Full text link
    At tree-level, gravity amplitudes are obtainable directly from gauge theory amplitudes via the Kawai, Lewellen and Tye closed-open string relations. We explain how the unitarity method allows us to use these relations to obtain coefficients of box integrals appearing in one-loop N=8 supergravity amplitudes from the recent computation of the coefficients for N=4 super-Yang-Mills non-maximally-helicity-violating amplitudes. We argue from factorisation that these box coefficients determine the one-loop N=8 supergravity amplitudes, although this remains to be proven. We also show that twistor-space properties of the N=8 supergravity amplitudes are inherited from the corresponding properties of N=4 super-Yang-Mills theory. We give a number of examples illustrating these ideas.Comment: 32 pages, minor typos correcte

    On Perturbative Gravity and Gauge Theory

    Get PDF
    We review some applications of tree-level (classical) relations between gravity and gauge theory that follow from string theory. Together with DD-dimensional unitarity, these relations can be used to perturbatively quantize gravity theories, i.e. they contain the necessary information for obtaining loop contributions. We also review recent applications of these ideas showing that N=1 D=11 supergravity diverges, and review arguments that N=8 D=4 supergravity is less divergent than previously thought, though it does appear to diverge at five loops. Finally, we describe field variables for the Einstein-Hilbert Lagrangian that help clarify the perturbative relationship between gravity and gauge theory.Comment: Talk presented at Third Meeting on Constrained Dynamics and Quantum Gravity, Villasimius (Sardinia, Italy) September 13-17, 1999 and at the Workshop on Light-Cone QCD and Nonperturbative Hadron Physics, University of Adelaide (Australia) December 13-22, 1999. Latex, 9 page

    Poincare Polynomials and Level Rank Dualities in the N=2N=2 Coset Construction

    Full text link
    We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the N=2N=2 superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner con- struction in terms of simple currents and introduce the so-called extended Poincar\'e polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities. (Invited talk given at the III. International Conference on Mathematical Physics, String Theory and Quantum Gravity, Alushta, Ukraine, June 1993. To appear in Theor. Math. Phys.)Comment: 14 pages in LaTeX, HD-THEP-93-4

    One-Loop NMHV Amplitudes involving Gluinos and Scalars in N=4 Gauge Theory

    Full text link
    We use Supersymmetric Ward Identities and quadruple cuts to generate n-pt NMHV amplitudes involving gluinos and adjoint scalars from purely gluonic amplitudes. We present a set of factors that can be used to generate one-loop NMHV amplitudes involving gluinos or adjoint scalars in N=4 Super Yang-Mills from the corresponding purely gluonic amplitude.Comment: 16 pages, JHEP versio

    On the Relationship between Yang-Mills Theory and Gravity and its Implication for Ultraviolet Divergences

    Get PDF
    String theory implies that field theories containing gravity are in a certain sense `products' of gauge theories. We make this product structure explicit up to two loops for the relatively simple case of N=8 supergravity four-point amplitudes, demonstrating that they are `squares' of N=4 super-Yang-Mills amplitudes. This is accomplished by obtaining an explicit expression for the DD-dimensional two-loop contribution to the four-particle S-matrix for N=8 supergravity, which we compare to the corresponding N=4 Yang-Mills result. From these expressions we also obtain the two-loop ultraviolet divergences in dimensions D=7 through D=11. The analysis relies on the unitarity cuts of the two theories, many of which can be recycled from a one-loop computation. The two-particle cuts, which may be iterated to all loop orders, suggest that squaring relations between the two theories exist at any loop order. The loop-momentum power-counting implied by our two-particle cut analysis indicates that in four dimensions the first four-point divergence in N=8 supergravity should appear at five loops, contrary to the earlier expectation, based on superspace arguments, of a three-loop counterterm.Comment: Latex, 52 pages, discussion of 2 loop divergences in D=8,10 adde

    Recursive Calculation of One-Loop QCD Integral Coefficients

    Full text link
    We present a new procedure using on-shell recursion to determine coefficients of integral functions appearing in one-loop scattering amplitudes of gauge theories, including QCD. With this procedure, coefficients of integrals, including bubbles and triangles, can be determined without resorting to integration. We give criteria for avoiding spurious singularities and boundary terms that would invalidate the recursion. As an example where the criteria are satisfied, we obtain all cut-constructible contributions to the one-loop n-gluon scattering amplitude, A_n^{oneloop}(...--+++...), with split-helicity from an N=1 chiral multiplet and from a complex scalar. Using the supersymmetric decomposition, these are ingredients in the construction of QCD amplitudes with the same helicities. This method requires prior knowledge of amplitudes with sufficiently large numbers of legs as input. In many cases, these are already known in compact forms from the unitarity method.Comment: 36 pages; v2 clarification added and typos fixed, v3 typos fixe
    • …
    corecore