19 research outputs found

    Conformal Field Theory and Hyperbolic Geometry

    Full text link
    We examine the correspondence between the conformal field theory of boundary operators and two-dimensional hyperbolic geometry. By consideration of domain boundaries in two-dimensional critical systems, and the invariance of the hyperbolic length, we motivate a reformulation of the basic equation of conformal covariance. The scale factors gain a new, physical interpretation. We exhibit a fully factored form for the three-point function. A doubly-infinite discrete series of central charges with limit c=-2 is discovered. A correspondence between the anomalous dimension and the angle of certain hyperbolic figures emerges. Note: email after 12/19: [email protected]: 7 pages (PlainTeX

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Classical Open String Models in 4-Dim Minkowski Spacetime

    Full text link
    Classical bosonic open string models in fourdimensional Minkowski spacetime are discussed. A special attention is paid to the choice of edge conditions, which can follow consistently from the action principle. We consider lagrangians that can depend on second order derivatives of worldsheet coordinates. A revised interpretation of the variational problem for such theories is given. We derive a general form of a boundary term that can be added to the open string action to control edge conditions and modify conservation laws. An extended boundary problem for minimal surfaces is examined. Following the treatment of this model in the geometric approach, we obtain that classical open string states correspond to solutions of a complex Liouville equation. In contrast to the Nambu-Goto case, the Liouville potential is finite and constant at worldsheet boundaries. The phase part of the potential defines topological sectors of solutions.Comment: 25 pages, LaTeX, preprint TPJU-28-93 (the previous version was truncated by ftp...

    Grand Unification with Three Generations in Free Fermionic String Models

    Get PDF
    We examine the problem of constructing three generation free fermionic string models with grand unified gauge groups. We attempt the construction of G×GG\times G models, where GG is a grand unified group realized at level 1. This structure allows those Higgs representations to appear which are necessary to break the symmetry down to the standard model gauge group. For G=SO(10)G=SO(10), we find only models with an even number of generations. However, for G=SU(5)G=SU(5) we find a number of 3 generation models.Comment: 22 pages, latex. References added to original versio

    Cardy condition for open-closed field algebras

    Get PDF
    Let VV be a vertex operator algebra satisfying certain reductivity and finiteness conditions such that CV\mathcal{C}_V, the category of V-modules, is a modular tensor category. We study open-closed field algebras over V equipped with nondegenerate invariant bilinear forms for both open and closed sectors. We show that they give algebras over certain \C-extension of the Swiss-cheese partial dioperad, and we obtain Ishibashi states easily in such algebras. We formulate Cardy condition algebraically in terms of the action of the modular transformation S:τ1τS: \tau \mapsto -\frac{1}{\tau} on the space of intertwining operators. We then derive a graphical representation of S in the modular tensor category CV\mathcal{C}_V. This result enables us to give a categorical formulation of Cardy condition and modular invariant conformal full field algebra over VVV\otimes V. Then we incorporate the modular invariance condition for genus-one closed theory, Cardy condition and the axioms for open-closed field algebra over V equipped with nondegenerate invariant bilinear forms into a tensor-categorical notion called Cardy CVCVV\mathcal{C}_V|\mathcal{C}_{V\otimes V}-algebra. We also give a categorical construction of Cardy CVCVV\mathcal{C}_V|\mathcal{C}_{V\otimes V}-algebra in Cardy case.Comment: 70 page, 105 figures, references are updated. less typos, to appear in Comm. Math. Phy

    A relation between tree amplitudes of closed and open strings

    No full text
    We derive a formula which expresses any closed string tree amplitude in terms of a sum of the products of appropriate open string tree amplitudes. This formula is applicable to the heterotic string as well as to the closed bosonic string and type II superstrings. In particular, we demonstrate its use by showing how to write down, without any direct calculation, all four-point heterotic string tree amplitudes with massless external particles. © 1986

    The spin structure construction of string models and multi-loop modular invariance

    No full text
    Some properties of the spin structure construction of consistent fermionic string models in ten or fewer dimensions are discussed. In models constructed from free complex world-sheet fermions it is shown that, assuming factorization of amplitudes and one-loop modular invariance, the requirements of a physically sensible projection of states and multi-loop modular invariance are entirely equivalent. The case of models requiring real (rather than complex) fermions for their construction is given a more thorough treatment here. In particular some subleties involved in studying higher-lopp amplitudes are noted and the necessity of some requirements which have appeared in the literature are questioned. A proof that the massless vector bosons appearing in these models fall in the adjoint representation of a Lie group is given, along with some examples of models requiring real fermions for their construction. © 1988

    Design and operation of a superconducting quarter-wave electron gun

    Get PDF
    The article of record as published may be found at: http://dx.doi.org10.1103/PhysRevSTAB.14.053501Superconducting radio-frequency electron guns are viewed by many as the preferred technology for generating the high-quality, high-current beams needed for future high power-free-electron lasers and energy recovery linacs. All previous guns of this type have employed elliptical cavities, but there are potential advantages associated with other geometries. Here we describe the design, commissioning, and initial results from a superconducting radio-frequency electron gun employing a quarter-wave resonator configuration, the first such device to be built and tested. In initial operation, the gun has generated beams with bunch charge is excess in 78 pC, energy of 469 keV, and normalized rms emittances of about 4.9 um. Currently, bunch charge is limited by the available drive laser energy, and beam energy is limited by x-ray production and the available rf power. No fundamental limits on beam charge or energy have been encountered, and no high-field quenching events have been observed.Office of Naval Research and the High Energy Laser Joint Technology Office.Approved for public release; distribution is unlimited

    NPS prototype superconducting 500 MHz quarter-wave gun update

    Get PDF
    Proceedings of FEL2010, Malmö, SwedenThe Naval Postgraduate School (NPS) Beam Physics Laboratory, Niowave, Inc., and The Boeing Company have completed construction of a superconducting 500 MHz quarter-wave gun and photocathode drive laser system. This prototype gun went from conception to initial operation in just under one calendar year. Such rapid progress is due in part to the decision to develop the gun as a prototype, deliberately omitting some features, such as tuners and a cathode loadlock, desired for a linac beam source. This will enable validation of the basic concept for the gun, including high-charge bunch dynamics, as rapidly as possible, with lessons learned applied to the next generation gun. This paper presents results from initial testing of the gun, technical challenges of the prototype design, and improvements that would enhance capabilities in future versions of this novel design
    corecore