873 research outputs found

    FLIC-Overlap Fermions and Topology

    Get PDF
    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F_mu_nu in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(a^4)-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice.Comment: Lattice2002(chiral

    Spin-3/2 Nucleon and Delta Baryons in Lattice QCD

    Full text link
    We present first results for masses of spin-3/2 N and Delta baryons in lattice QCD using Fat-Link Irrelevant Clover (FLIC) fermions. Spin-3/2 interpolating fields providing overlap with both spin-3/2 and spin-1/2 states are considered. In the isospin-1/2 sector, we observe, after appropriate spin and parity projection, a strong signal for the J^P=3/2^- state together with a weak but discernible signal for the 3/2^+ state with a mass splitting near that observed experimentally. We also find good agreement between the 1/2^+/- masses and earlier nucleon mass simulations with the standard spin-1/2 interpolating field. For the isospin-3/2 Delta states, clear mass splittings are observed between the various 1/2^+/- and 3/2^+/- channels, with the calculated level orderings in good agreement with those observed empirically.Comment: 17 pages, 8 figures, 2 table

    Hybrid and Exotic Mesons from FLIC Fermions

    Full text link
    The spectral properties of hybrid meson interpolating fields are investigated. The quantum numbers of the meson are carried by smeared-source fermion operators and highly-improved chromo-electric and -magnetic field operators composed with APE-smeared links. The effective masses of standard and hybrid operators indicate that the ground state meson is effectively isolated using both standard and hybrid interpolating fields. Focus is placed on interpolating fields in which the large spinor components of the quark and antiquark fields are merged. In particular, the effective mass of the exotic 1+1^{-+} meson is reported. Further, we port some values for excited mesonic states using a variational process.Comment: 3 Pages, 3 figures, Lattice2003(Spectrum

    Cooling for instantons and the Wrath of Nahm

    Get PDF
    The dynamics of instantons and anti-instantons in lattice QCD can be studied by analysing the action and topological charge of configurations as they approach a self-dual or anti-self-dual state, i.e. a state in which S/S_0=|Q|. We use cooling to reveal the semi-classical structure of the configurations we study. Improved actions which eliminate discretization errors up to and including O(a^4) are used to stabilise instantons as we cool for several thousand sweeps. An analogously improved lattice version of the continuum field-strength tensor is used to construct a topological charge free from O(a^4) discretization errors. Values of the action and topological charge obtained with these improved operators approach mutually-consistent integer values to within a few parts in 10^4 after several hundred cooling sweeps. Analysis of configurations with |Q| \approx 1 and |Q| \approx 2 supports the hypothesis that a self-dual |Q|=1 configuration cannot exist on the 4-torus.Comment: 5 pages, 4 figures, talk presented at the workshop on Lattice Hadron Physics, Cairns Australia, July 200

    Hybrid Meson Spectrum from the FLIC action

    Get PDF
    The spectral properties of hybrid meson interpolating fields are investigated. The quantum numbers of the meson are carried by smeared-source fermion operators and highly-improved chromo-electric and -magnetic field operators composed with APE-smeared links. The effective masses of standard and hybrid operators indicate that the ground state meson is effectively isolated using both standard and hybrid interpolating fields. Focus is placed on interpolating fields in which the large spinor components of the quark and antiquark fields are merged. In particular, the effective mass of the exotic 1+1^{-+} meson is reported. Further, we report some values for excited mesonic states using a variational process.Comment: Talk given by A.G Williams at Workshop on Lattice Hadron Physics, Cairns, Queensland, Australia, July 200

    Baryon resonances from a novel fat-link fermion action

    Get PDF
    We present first results for masses of positive and negative parity excited baryons in lattice QCD using an O(a^2) improved gluon action and a Fat Link Irrelevant Clover (FLIC) fermion action in which only the irrelevant operators are constructed with fat links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner, even for the Wilson fermion action. The results also indicate a splitting between the lowest J^P = 1/2^- states for the two standard nucleon interpolating fields.Comment: 5 pages, 3 figures, talk given by W.Melnitchouk at LHP 2001 workshop, Cairns, Australi

    Excited Baryons in Lattice QCD

    Get PDF
    We present first results for the masses of positive and negative parity excited baryons calculated in lattice QCD using an O(a^2)-improved gluon action and a fat-link irrelevant clover (FLIC) fermion action in which only the irrelevant operators are constructed with APE-smeared links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner. An correlation matrix analysis reveals two low-lying J^P=(1/2)^- states with a small mass splitting. The study of different Lambda interpolating fields suggests a similar splitting between the lowest two Lambda1/2^- octet states. However, the empirical mass suppression of the Lambda^*(1405) is not evident in these quenched QCD simulations, suggesting a potentially important role for the meson cloud of the Lambda^*(1405) and/or a need for more exotic interpolating fields.Comment: Correlation matrix analysis performed. Increased to 400 configurations. 22 pages, 13 figures, 15 table

    Electromagnetic Form Factors with FLIC fermions

    Get PDF
    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a) improvement and allows efficient access to the light quark-mass regime. FLIC fermions enable the construction of the nonperturbatively O(a)-improved conserved vector current without the difficulties associated with the fine tuning of the improvement coefficients. The simulations are performed with an O(a^2) mean-field improved plaquette-plus-rectangle gluon action on a 20^3 x 40 lattice with a lattice spacing of 0.128 fm, enabling the first simulation of baryon form factors at light quark masses on a large volume lattice. Magnetic moments, electric charge radii and magnetic radii are extracted from these form factors, and show interesting chiral nonanalytic behavior in the light quark mass regime.Comment: Presented by J.Zanotti at the Workshop on Lattice Hadron Physics, Cairns, Australia, 2003. 7pp, 8 figure

    Light Quark Simulations With FLIC Fermions

    Get PDF
    Hadron masses are calculated in quenched lattice QCD in order to probe the scaling behavior of a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using APE-smeared links. Light quark masses corresponding to an m_pi / m_rho ratio of 0.35 are considered to assess the exceptional configuration problem of clover-fermion actions. This Fat-Link Irrelevant Clover (FLIC) fermion action provides scaling which is superior to mean-field improvement and offers advantages over nonperturbative improvement, including reduced exceptional configurations.Comment: 3 pages, 2 figures, Lattice2002(QCD Spectrum and Quark Masses

    Novel fat-link fermion actions

    Get PDF
    The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using smeared links. The simulations are performed on a 16^3 X 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative O(a) improvement.Comment: 5 pages, 2 figures, talk given by J.Zanotti at LHP 2001 workshop, Cairns, Australi
    corecore