23 research outputs found

    A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes

    Get PDF
    We discuss selected aspects of a new parallel three-dimensional (3-D) computational tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL) casting processes. This tool, known as {bold Telluride}, draws upon on robust, high resolution finite volume solutions of metal alloy mass, momentum, and enthalpy conservation equations to model the filling, cooling, and solidification of LANL castings. We briefly describe the current {bold Telluride} physical models and solution methods, then detail our parallelization strategy as implemented with Fortran 90 (F90). This strategy has yielded straightforward and efficient parallelization on distributed and shared memory architectures, aided in large part by new parallel libraries {bold JTpack9O} for Krylov-subspace iterative solution methods and {bold PGSLib} for efficient gather/scatter operations. We illustrate our methodology and current capabilities with source code examples and parallel efficiency results for a LANL casting simulation

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
    corecore