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A High Resolution Finite Volume Method for Efficient Parallel 
Simulation of Casting Processes on Unstructured Meshes * 
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Abstract 

We discuss selected aspects of a new parallel three-dimensional (3-D) computational 
tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL) 
casting processes. This tool, known as Telluride, draws upon on robust, high resolution 
finite volume solutions of metal alloy mass, momentum, and enthalpy conservation 
equations to model the filling, cooling, and solidification of LANL castings. We briefly 
describe the current Telluride physical models and solution methods, then detail 
our parallelization strategy as implemented with Fortran 90 (F90). This strategy 
has yielded straightforward and efficient parallelization on distributed and shared 
memory architectures, aided in large part by new parallel libraries JTpackSO [all for 
Krylov-subspace iterative solution methods and PGSLib [7] for efficient gather/scatter 
operations. We illustrate our methodology and current capabilities with source code 
examples and parallel efficiency results for a LANL casting simulation. 

1 Introduction 
We are currently pursuing the development of a comprehensive and robust casting 
simulation tool, known as Telluride [12], which is being designed to model the metal 
alloy molten fluid flow, heat flow, solidification, species transport) and interface dynamics 
present within the complex 3-D part and mold geometries cast in LANL foundries. To be 
value-added, Telluride must not only integrate all these relevant physical processes, it must 
also incorporate the latest advances in numerical algorithms and solidification theory. In 
addition, the computational resources commanded by casting process simulation necessitate 
efficient parallel execution on current high performance computing architectures. 

Driven by increasing demands on quality and control of microstructure) solidification 
theory and modeling provide the basis for influencing microstructure and improving the 
quality of cast products. For example, a common occurrence in castings is the local variation 
of microstructure, which can result in compositional and property variation throughout the 
entire part. Such defects are difficult to eliminate once they are cast into the part, tending 
to  persist even after final forming. We anticipate that Telluride will have the potential 
to  improve casting practices) reduce foundry costs, and provide a means to advance the 
theory and understanding of alloy solidification. 

*Supported by the Department of Energy Accelerated Strategic Computing Initiative Program. 
+LANL, Fluid Dynamics Group T-3, MS B216, Los Alamos, NM 87545 (dbk@lanl.gov). 
$Cambridge Power Computing Associates, Ltd., 2 Still St., Brookline, MA 02146 (fermIl@cpca.com). 
§LANL, Transport Methods Group X-TM, MS B226, Los Alamos, NM 87545 (twner@lanl.gov).  
nLANL, Hydrodynamic Applications Group X-HM, MS F663, Los Alamos, NM 87545 (sjm@lanl.gov). 

1 



2 

2 
A realistic model for metal alloy casting processes requires descriptions for many physical 
phenomena: incompressible free surface flow of the molten metal during the fill process, 
interfacial surface tension at the molten metal free surface, soldification and melting phase 
change rates of multiple species alloys possessing an arbitrary phase diagram, alloy species 
liquid and solid phase transport, and microscopic mushy zone effects, to name a few. We 
follow the methodology of Beckermann [3], in which alloy species mass, momentum, and 
energy equations are volume-averaged in a traditional multiphase approach. 

Metal alloy mass, momentum, and energy transport is modeled with a simplified version 
of the volume-averaged two-phase model of Beckermann [17, 31. In formulating the model 
equations, we currently assume that the solid phase is stationary? the solid and liquid 
phases are in thermal equilibrium, liquid species concentrations are equal to their interfacial 
averages, and finite-rate macroscopic species diffusion is negligible. See [18] for further 
details of the Telluride alloy solidification models. 

Our incompressible flow algorithm builds upon our past work on two-dimensional free 
surface flows [ll] having interfacial surface tension [5] .  We have increased the algorithm 
accuracy and robustness by incorporating the advances of Bell and coworkers 141 in devising 
high resolution projection method solutions of the Navier-Stokes equations coupled with 
modern interface tracking algorithms. This approach has yielded high-fidelity flow solutions 
that are fully second-order in time and space [19]. 

We have extended projection-based Navier-Stokes solution methods to 3-D unstructured 
grids without unnecessarily sacrificing robustness, accuracy? or efficiency. Our current 
approach has borrowed from the innovative techniques of Barth [l], an example being 
least-squares reconstruction schemes. We have also extended a 3-D unsplit advection 
technique I201 to unstructured meshes, which has allowed consistent use of high-order 
monotone advection in incompressible flows. 

Finally, we have extended our volume tracking algorithms to 3-D generalized hexahedral 
grids [13]. Fluid interfaces are tracked on generalized hexahedral meshes and localized over 
a one cell width for each time step. Interfaces are assumed to  be locally planar within each 
cell, giving a globally piecewise planar approximation to the actual geometry. 

Physical Model and Solution Method 

3 Software Design Issues 
Here we discuss our software design philosophies and gods and our implementation using 
object-based F90 [6]. We also discuss briefly our coordination of a development team tasked 
to  engineer efficient software within programmatic constraints [16]. 

3.1 Design Philosophy 
Many important decisions confronted while engineering the Telluride software have 
been guided by our principal design goals of seamless portability, functionally-based 
modularity, and efficient parallelism. Since current architectures change on a yearly basis, 
software longevity will not be realized if design and implementation is targeted toward 
efficient execution on a specific architecture. The Telluride software has therefore been 
implemented in strict adherence to a language standard, chosen to be F90. By commiting 
to languages that have formal standards, software portability can be realized if compiler 
availability is widespread and reliability is high. To date, our commitment to F90 as the 
principal programming language has resulted in successful simulations of casting processes 
on a long and varied list of computing platforms. 
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3.2 
Programming languages are generally considered to be object-oriented (00) if constructs 
are provided to support data abstraction, information hiding, inheritance, and tem- 
plates [14]. F90 explicitly provides for the expression of data abstraction and informa- 
tion hiding, and indirectly allows for some aspects of inheritance and templates. In this 
regard, F90 might more appropriately be considered an object-based (OB) or function- 
ally object-oriented (F/OO) language [14, 221. We are currently finding useful many new 
features offered by F90: free-form source, concise array syntax, portable constructs for pre- 
cision (kind numbers), data abstraction with derived types, modules and their associated 
information hiding, argument checking via module procedures and interface blocks, poly- 
morphism via generic procedures, pointered and allocatable variables, and a rich variety of 
powerful intrinsics. By remaining active in the Fortran programming community, we are 
confident we will impact the changes, improvements, and additions that will (and should) 
occur as F90 evolves toward F95 and F2K. 

Implementation via Object-Based Fortran 90 

3.3 Team Software Development Practices 
Each team member is responsible for one or more modules, defined as a procedure or set 
of procedures that performs some specific task. Each module has a static and well-defined 
purpose and interface. This approach allows parallel and independent module development 
that is not obtrusive to other modules, and is standard practice among many successful 
commercial software endeavors [15]. Our modules tend to be arranged according to their 
functionality (e.g., a phase change module, a fluid flow module, etc.), not their data (as in 
many 00 projects), hence the overall design stategy is F/OO. 

The Telluride modules are constructed with one or more F90 modules, each containing 
one or more module procedures. The F90 modules are defaulted private, i.e., only the 
input and output are accessible (public) to the outside world (calling procedure). By 
containing procedures within modules, they can be hidden, their calling arguments can be 
optional and/or checked by the compiler, and polymorphism (via generic procedures) can 
be exploited. By using well-defined interfaces, data structures within modules can change 
without prior approval from the calling procedure. 

Daily functions of the software development team responsible for the design and 
implementation of Telluride and related modules (JTpackSO, PGSLib) are coordinated 
according to published proven practices [ 151. Our software (currently numbering -50K 
lines of source code) is maintained with the concurrent versions system (CVS)l. We do 
not have a principal “code librarian”, i.e., all team members are encouraged to commit 
modifications to the central source code repository on a regular basis. CVS enables easy 
extraction of prior versions, and maintains an “audit trial” of the software evolution. 

3.4 
We first define parameters for kind numbers (essential for portability) and mesh attributes, 
! ndim - physical dimensions; nfc - faces per cell; nvc - vertices per cell 
integer, parameter : : int-kind = KIND(l), real-kind = KIND(l.Od0) 
integer(int,kind), parameter :: ndim = 3, nfc = 6, nvc = 8 

Example: Mesh Connectivity and Cell Geometry Data Structures 

which enable each Telluride cell to be considered a logical cube. By allowing cell face 
vertices to coincide in physical space, this logical cube definition supports all relevant 3-D 

‘See www . l or ia .  f r/Nmolli/cvs-index.htm1 for further information on CVS. 
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cell types (hex, tet, prism, or pyramid) without cell-specific source code. Given the above 
parameters, a MESH-CONNECTIVITY derived type is defined for each cell: 

type MESH-CONNECTIVITY 
integer(int-kind) , dimensionhf c) : : Ngbr-Cell , Ngbr-Face 
integer(int-kind), dimension(nvc) :: Ngbr-Vrtx 
integer(int-kind) : : Ngbr-PE-Flag 

end type MESH-CONNECTIVITY 

Here, for example, components Ngbr-Cell(f) and Ngbr-Face(f) store the cell and face 
numbers, respectively, across face f of the reference cell. We also define, for each cell, a 
CELL-GEOMETRY derived type, 

type CELL-GEOMETRY 
real(real,kind), dimension(ndim,nfc) :: Face-Normal, Face-Centroid 
real(rea1,kind) , dimension(nf c) :: Face-Area, Halfwidth 
real (real-kind) , dimension(ndim) :: Centroid 
re a1 (re a1 ,kind 1 :: Volume 

end type CELL-GEOMETRY 

which stores all physical cell geometry information. Arrays of these derived types are 
then declared, which are pointered so their size (ncells) can be determined and allocated 
dynamically at execution time. Once allocated, array syntax is used for conciseness and 
readability, e.g., Cell%Volume represents the cell volume array. One drawback of this data 
structure is the duplicate storage cell face information. Many of our data structure choices 
have placed more importance of conciseness, minimal indirect addressing, and efficient 
parallelism rather than minimal memory usage. 

4 Parallelization Strategy 
Our parallelization strategy is quite simple: explicitly decompose and distribute the global 
Telluride mesh across all processors available to perform work on the problem at hand. 
This strategy is independent of the processor’s direct memory access capabilites: local 
(distributed memory systems) or global (shared memory systems). We have therefore 
chosen to explicitly program for parallelism, rather than relying upon parallelism via 
compiler directives (as in HPF2) or parallelism switches. Explicit parallelism demands 
greater initial software design and development, but results in more portable and efficiently 
par allelized soft ware. 

We have designed parallelism into our software by separating all communication from 
computation, then parallelizing the communication via the explicit passing of messages 
between processors. Message passing, accomplished by calls to the MPI library [8], is 
necessary when the requested data does not reside in local memory owned by the current 
processor. For the unstructured meshes utilized by Telluride, indirect addressing is 
required to retrieve neighboring cell information. For example, the following code 

FACE-LOOP: do f = 1,nfc 
CELL-LOOP: do i = 1,ncells 

end do CELL-LOOP 
Neighbor,Volume(f , i) = Cell(Mesh(i)%Ngbr,Cell(f))%Volume 

end do FACE-LOOP 

2See HUH. crpc . r i c e .  edu/HPFF/home .html for further information on HPF. 
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returns in array Neighbor-Volume the volume of cell (face) neighbors. This information 
will not be available to the processor owning cell i if the data for the face neighbor f of cell 
i resides on another processor. The needed data must first be retrieved from all relevant 
processors into a local buffer. 

Explicit parallelism of this gather operation is accomplished as follows: buffers to hold 
the incoming and outgoing off-processor data are first allocated; outgoing buffer data is then 
assimilated and sent; off-processor data is received into the incoming buffer; and, finally, 
indirect addressing from either the incoming buffer or the original source array. Rather 
than inserting these constructs wherever indirect addressing operations are needed, we 
have replaced them with calls to various gather/scatter module procedures. For example, 
the loop above now becomes: 

use gs-module, only: EE-GATHER 
call EE-GATHER (Neighbor-Volume , Cell%Volume , Mesh) 
where EE-GATHER is a generic module procedure (in gsaodule) that performs all the nec- 
essary indirect addressing and message passing functions required to gather CellXVolume 
data and return it in Neighbor-Volume. 

By invoking gather/scatter module procedures, platform-specific explicit parallelism 
(message passing) is effectively hidden, instead of being littered throughout the entire 
source; and, communication is decoupled from all loops performing real computation, which 
allows compiler optimization to efficiently fuse large code blocks. The principal drawback 
to this approach is the local allocation of temporary “container arrays” required to hold the 
output returned by the gather/scatter procedures. We have traded memory in return for 
modular, portable, and efficient parallelization and computation loops that can be highly 
optimized. 

4.1 Gather/Scatter Modules. 
To illustrate the functionality of our gather/scatter modules, consider the example source 
code below, taken from our current gather module. First, we define an EE-GATHER generic 
procedure that allows the host application to gather scalar or vector data that is of 
type integer, logical and single/double precision real. This polymorphism enables the 
applications programmer to use only the EE-GATHER calling protocol, regardless of the data 
being gathered. Now consider the GATHERDOUBLE module procedure below, which gathers 
double precision real scdar data from array Src into array Dest: 

SUBROUTINE GATHER-DOUBLE (Dest, Src, Mesh) 
imp1 i c it none 
real (double-kind) , dimension( : , : ) , intent(0UT) : : Dest 
type(MESH,CONNECTIVITY), dimension(SIZE(Dest,2)), intent(1N) :: Mesh 
real(doub1e-kind), dimension(:), intent(1N) : : Src 
integer(int,kind) :: c, f 
FACE-LOOP: do f = l,SIZE(Dest,l) 

end do FACE-LOOP 
return 

Dest (f , : = Src(Mesh%Ngbr,cell(f) ) 

END SUBROUTINE GATHER-DOUBLE 

This simple procedure is merely a wrapper around the indirect addressing code shown in 
the NEIGHBOR-VOLUME loop above. If the memory is distributed across processors, however, 
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explicit parallelization of this procedure is not trivial. Parallel versions of our gather/scatter 
procedures rely upon PGSLib  to do the interprocessor communication, as shown next. 

4.2 
An explicitly parallel version of the GATHERDOUBLE module procedure above now becomes: 

Parallel Gather/Scatter with PGSLib [7] 

BUFFER-CELLS: do c = 1, Trace%N-Duplicate 
BUFFER-FACES: do f = 1, SIZE(Src,l) 

end do BUFFER-FACES 
Comm,Buffer(f ,c) = Src(f ,Trace%Duplicate,Indices(c)) 

end do BUFFER-CELLS 
call PGSLIB-GATHER-BUFFER (Off ,Buf f er , Comm-Buf f er , Trace) 
CELL-LOOP: do c = 1, SIZE(Dest,2) 

FACE-LOOP: do f = 1, SIZE(Dest,l) 
if (BTEST(Mesh(c)%Ngbr,PE-Flag, C11NgbrXBj.t (f) ) )  then 

else 

end if 

Dest(f ,c) = Src(Mesh(c)%Ngbr-Face(f) , Mesh(c)%Ngbr,Cell(f)) 

Dest (f , c) = Off -Buf f er (Mesh(c) %Ngbr-Face(f ) , Mesh(c) %Ngbr-Cell (f) 

end do FACE-LOOP 
end do CELL-LOOP 

The only difference between this parallel gather operation relative to the previous serial 
example is that the gather must access a different buffer (OffBuffer) if the requested 
information is off-processor. Before this operation can be performed, however, the off- 
processor data must be assimilated and communicated between processors, which is the 
purpose of the first loop and PGSLib call. MPI-based message passing is occurs inside 
the PGSLib  call. 

5 
Our implicit Navier-Stokes and heat transfer/solidification algorithms require the solution 
of linear systems of equations. A given time step in Telluride can require several matrix 
solutions, so the majority of our solution algorithm is spent in a linear solver library known 
as JTpackSO [21]. The package is also written in object-based F90, and is also explicitly 
parallelized via calls to gather/scatter modules that rely on PGSLib [7] to perform the 
message passing. Telluride interfaces to JTpackSO by linking to its library and “using” 
its module information files. 

We currently solve our systems in parallel over the entire mesh, rather than invoking 
a Schwarz decomposition 121. For orthogonal meshes, we store the matrix and use 
preconditioned CG to solve the system. For generally nonorthogonal, unstructured meshes, 
we do not store the matrix and use preconditioned GMRES to solve the system. In all 
cases, we interface with JTpackSO in matrix-free form, Le., matrix-vector multiplication 
is performed with procedures provided by Telluride. All matrix-vector multiplications are 
therefore performed in Telluride, enabling control over indirect addressing (hence their 
parallelization). This also avoids having to assimilate and store the matrix, which for 
a general unstructured mesh is often intractable, especially for our current least-squares 
Laplacian operator [I]. 

Parallel Linear Solutions with JTpackSO [21] 
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TABLE 1 
Chalice solidification parallel eficiemies on a shared memory system.a 

Processors (ps/cell/cycle) Efficiency 
1 5013 1.00 

“300 MHz Digital Alphaserver 8400 

We have found preconditioning the GMRES solution of our least-squares Laplacian 
operator with a low-order operator (one that assumes the mesh to be orthogonal and simply- 
connected) to be quite effective. We have additionally found that solving the preconditioner 
equation with a loosely-converged CG algorithm yields an order of magnitude speedup over 
more traditional preconditioning alternatives. 

6 
We now present evidence for the excellent parallel efficiencies realized in a real-world 
Telluride casting simulation of the cooling and solidification of a copper “chalice”. The 
simulation is performed on a multi-processor shared memory3 system. The interested reader 
should also consult reference [21] for additional parallel efficiencies obtained for Telluride 
implicit heat conduction simulations on both shared and distributed memory systems. 

The copper chalice was cast at a LANL foundry in support of the LANL inertial 
confinement fusion program. It is essentially a hemispherical shell (two inch diameter) gated 
at its pole with a cylindrical “hot top”. The hot top serves to continuously supply liquid 
metal to the hemispherical shell during filling/solidification (to avoid shrinkage defects). 
The hot top is then cut away and machined after solidification to give the final product 
(the hemispherical shell). 

To date, two single-processor chalice simulations have been performed: (1) isothermal 
filling of the mold cavity (neglecting heat transfer), and (2) cooling/solidifying of the 
quiescent liquid copper subsequent to fill. One quadrant of the full geometry is simulated, 
with the geometric model and computational mesh (6480 unstructured hex elements) being 
generated with the I-DEAS commercial software package. Space unfortunately does not 
permit including any chalice simulation results, so the reader is encouraged to consult the 
Telluride home page4 for graphical results (including animations). 

A higher-resolution result (46,386-cell quadrant) is easily achieved with a parallel chalice 
simulation. Using the Chaco [9] decomposition software, we decompose the mesh into an 
arbitrary number of submeshes, depending upon the number of processors available to do 
the problem (see [all for an example of an eight submesh decomposition). As Table 6 
indicates, excellent parallel efficiencies are realized for this Simulation, which is a real-world 
example of the types of parallel casting simulations Telluride must perform relative to 
an idealized heat conduction problem [21]. Based on these preliminary results, we expect 
excellent parallel efficiencies for unstructured mesh casting simulations that make use of 
with intelligent mesh decomposition algorithms [9, lo]. We expect further performance 

Numerical Example: Copper Chalice Solidification 

3300 MHz Digital Alphaserver 8400 (see www .dec. com/info/alphaserver/products. html) 
4http: //gnarly. lanl .gov/Telluride/Telluride.html 
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8 . 
improvements after efforts have been devoted to  single-processor optimization and load 
balancing localized models such as interface tracking and phase change. 
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