
' -
LA- U R -9 7 - 3

~ ' (+

I Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: A HIGH RESOLUTION FINITE VOLUME METHOD FOR
EFFICIENT PARALLEL SIMULATION OF CASTING
PROCESSES ON UNSTRUCTURED MESHES

AUMOR(S): Douglas B. Kothe, Theoretical Division, T-3
Robert C. Ferrell, Cambridge Pwr. Comput. Assoc.,
John A. Turner, X-TM
S. Jay Mosso, X-HM

SUBMITTED TO: 8th SIAM Conference on Parallel Processing for Scientific Computing,
Minneapolis, Minnesota, March 14-1 7, 1997

By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory LOG Anam08 Los Alamos, New Mexico 87545
FORM NO. 836 R4
ST. NO. 2629 5/81

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, proms, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

A High Resolution Finite Volume Method for Efficient Parallel
Simulation of Casting Processes on Unstructured Meshes *

Douglas B. Kothe Robert C. Ferrell John A. Turner 3 S. Jay Mosso

Abstract

We discuss selected aspects of a new parallel three-dimensional (3-D) computational
tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL)
casting processes. This tool, known as Telluride, draws upon on robust, high resolution
finite volume solutions of metal alloy mass, momentum, and enthalpy conservation
equations to model the filling, cooling, and solidification of LANL castings. We briefly
describe the current Telluride physical models and solution methods, then detail
our parallelization strategy as implemented with Fortran 90 (F90). This strategy
has yielded straightforward and efficient parallelization on distributed and shared
memory architectures, aided in large part by new parallel libraries JTpackSO [all for
Krylov-subspace iterative solution methods and PGSLib [7] for efficient gather/scatter
operations. We illustrate our methodology and current capabilities with source code
examples and parallel efficiency results for a LANL casting simulation.

1 Introduction
We are currently pursuing the development of a comprehensive and robust casting
simulation tool, known as Telluride [12], which is being designed to model the metal
alloy molten fluid flow, heat flow, solidification, species transport) and interface dynamics
present within the complex 3-D part and mold geometries cast in LANL foundries. To be
value-added, Telluride must not only integrate all these relevant physical processes, it must
also incorporate the latest advances in numerical algorithms and solidification theory. In
addition, the computational resources commanded by casting process simulation necessitate
efficient parallel execution on current high performance computing architectures.

Driven by increasing demands on quality and control of microstructure) solidification
theory and modeling provide the basis for influencing microstructure and improving the
quality of cast products. For example, a common occurrence in castings is the local variation
of microstructure, which can result in compositional and property variation throughout the
entire part. Such defects are difficult to eliminate once they are cast into the part, tending
to persist even after final forming. We anticipate that Telluride will have the potential
to improve casting practices) reduce foundry costs, and provide a means to advance the
theory and understanding of alloy solidification.

*Supported by the Department of Energy Accelerated Strategic Computing Initiative Program.
+LANL, Fluid Dynamics Group T-3, MS B216, Los Alamos, NM 87545 (dbk@lanl.gov).
$Cambridge Power Computing Associates, Ltd., 2 Still St., Brookline, MA 02146 (fermIl@cpca.com).
§LANL, Transport Methods Group X-TM, MS B226, Los Alamos, NM 87545 (twner@lanl.gov).
nLANL, Hydrodynamic Applications Group X-HM, MS F663, Los Alamos, NM 87545 (sjm@lanl.gov).

1

2

2
A realistic model for metal alloy casting processes requires descriptions for many physical
phenomena: incompressible free surface flow of the molten metal during the fill process,
interfacial surface tension at the molten metal free surface, soldification and melting phase
change rates of multiple species alloys possessing an arbitrary phase diagram, alloy species
liquid and solid phase transport, and microscopic mushy zone effects, to name a few. We
follow the methodology of Beckermann [3], in which alloy species mass, momentum, and
energy equations are volume-averaged in a traditional multiphase approach.

Metal alloy mass, momentum, and energy transport is modeled with a simplified version
of the volume-averaged two-phase model of Beckermann [17, 31. In formulating the model
equations, we currently assume that the solid phase is stationary? the solid and liquid
phases are in thermal equilibrium, liquid species concentrations are equal to their interfacial
averages, and finite-rate macroscopic species diffusion is negligible. See [18] for further
details of the Telluride alloy solidification models.

Our incompressible flow algorithm builds upon our past work on two-dimensional free
surface flows [ll] having interfacial surface tension [5] . We have increased the algorithm
accuracy and robustness by incorporating the advances of Bell and coworkers 141 in devising
high resolution projection method solutions of the Navier-Stokes equations coupled with
modern interface tracking algorithms. This approach has yielded high-fidelity flow solutions
that are fully second-order in time and space [19].

We have extended projection-based Navier-Stokes solution methods to 3-D unstructured
grids without unnecessarily sacrificing robustness, accuracy? or efficiency. Our current
approach has borrowed from the innovative techniques of Barth [l], an example being
least-squares reconstruction schemes. We have also extended a 3-D unsplit advection
technique I201 to unstructured meshes, which has allowed consistent use of high-order
monotone advection in incompressible flows.

Finally, we have extended our volume tracking algorithms to 3-D generalized hexahedral
grids [13]. Fluid interfaces are tracked on generalized hexahedral meshes and localized over
a one cell width for each time step. Interfaces are assumed to be locally planar within each
cell, giving a globally piecewise planar approximation to the actual geometry.

Physical Model and Solution Method

3 Software Design Issues
Here we discuss our software design philosophies and gods and our implementation using
object-based F90 [6]. We also discuss briefly our coordination of a development team tasked
to engineer efficient software within programmatic constraints [16].

3.1 Design Philosophy
Many important decisions confronted while engineering the Telluride software have
been guided by our principal design goals of seamless portability, functionally-based
modularity, and efficient parallelism. Since current architectures change on a yearly basis,
software longevity will not be realized if design and implementation is targeted toward
efficient execution on a specific architecture. The Telluride software has therefore been
implemented in strict adherence to a language standard, chosen to be F90. By commiting
to languages that have formal standards, software portability can be realized if compiler
availability is widespread and reliability is high. To date, our commitment to F90 as the
principal programming language has resulted in successful simulations of casting processes
on a long and varied list of computing platforms.

3

3.2
Programming languages are generally considered to be object-oriented (00) if constructs
are provided to support data abstraction, information hiding, inheritance, and tem-
plates [14]. F90 explicitly provides for the expression of data abstraction and informa-
tion hiding, and indirectly allows for some aspects of inheritance and templates. In this
regard, F90 might more appropriately be considered an object-based (OB) or function-
ally object-oriented (F/OO) language [14, 221. We are currently finding useful many new
features offered by F90: free-form source, concise array syntax, portable constructs for pre-
cision (kind numbers), data abstraction with derived types, modules and their associated
information hiding, argument checking via module procedures and interface blocks, poly-
morphism via generic procedures, pointered and allocatable variables, and a rich variety of
powerful intrinsics. By remaining active in the Fortran programming community, we are
confident we will impact the changes, improvements, and additions that will (and should)
occur as F90 evolves toward F95 and F2K.

Implementation via Object-Based Fortran 90

3.3 Team Software Development Practices
Each team member is responsible for one or more modules, defined as a procedure or set
of procedures that performs some specific task. Each module has a static and well-defined
purpose and interface. This approach allows parallel and independent module development
that is not obtrusive to other modules, and is standard practice among many successful
commercial software endeavors [15]. Our modules tend to be arranged according to their
functionality (e.g., a phase change module, a fluid flow module, etc.), not their data (as in
many 00 projects), hence the overall design stategy is F/OO.

The Telluride modules are constructed with one or more F90 modules, each containing
one or more module procedures. The F90 modules are defaulted private, i.e., only the
input and output are accessible (public) to the outside world (calling procedure). By
containing procedures within modules, they can be hidden, their calling arguments can be
optional and/or checked by the compiler, and polymorphism (via generic procedures) can
be exploited. By using well-defined interfaces, data structures within modules can change
without prior approval from the calling procedure.

Daily functions of the software development team responsible for the design and
implementation of Telluride and related modules (JTpackSO, PGSLib) are coordinated
according to published proven practices [151. Our software (currently numbering -50K
lines of source code) is maintained with the concurrent versions system (CVS)l. We do
not have a principal “code librarian”, i.e., all team members are encouraged to commit
modifications to the central source code repository on a regular basis. CVS enables easy
extraction of prior versions, and maintains an “audit trial” of the software evolution.

3.4
We first define parameters for kind numbers (essential for portability) and mesh attributes,
! ndim - physical dimensions; nfc - faces per cell; nvc - vertices per cell
integer, parameter : : int-kind = KIND(l), real-kind = KIND(l.Od0)
integer(int,kind), parameter :: ndim = 3, nfc = 6, nvc = 8

Example: Mesh Connectivity and Cell Geometry Data Structures

which enable each Telluride cell to be considered a logical cube. By allowing cell face
vertices to coincide in physical space, this logical cube definition supports all relevant 3-D

‘See www . l or ia . f r/Nmolli/cvs-index.htm1 for further information on CVS.

4

cell types (hex, tet, prism, or pyramid) without cell-specific source code. Given the above
parameters, a MESH-CONNECTIVITY derived type is defined for each cell:

type MESH-CONNECTIVITY
integer(int-kind) , dimensionhf c) : : Ngbr-Cell , Ngbr-Face
integer(int-kind), dimension(nvc) :: Ngbr-Vrtx
integer(int-kind) : : Ngbr-PE-Flag

end type MESH-CONNECTIVITY

Here, for example, components Ngbr-Cell(f) and Ngbr-Face(f) store the cell and face
numbers, respectively, across face f of the reference cell. We also define, for each cell, a
CELL-GEOMETRY derived type,

type CELL-GEOMETRY
real(real,kind), dimension(ndim,nfc) :: Face-Normal, Face-Centroid
real(rea1,kind) , dimension(nf c) :: Face-Area, Halfwidth
real (real-kind) , dimension(ndim) :: Centroid
re a1 (re a1 ,kind 1 :: Volume

end type CELL-GEOMETRY

which stores all physical cell geometry information. Arrays of these derived types are
then declared, which are pointered so their size (ncells) can be determined and allocated
dynamically at execution time. Once allocated, array syntax is used for conciseness and
readability, e.g., Cell%Volume represents the cell volume array. One drawback of this data
structure is the duplicate storage cell face information. Many of our data structure choices
have placed more importance of conciseness, minimal indirect addressing, and efficient
parallelism rather than minimal memory usage.

4 Parallelization Strategy
Our parallelization strategy is quite simple: explicitly decompose and distribute the global
Telluride mesh across all processors available to perform work on the problem at hand.
This strategy is independent of the processor’s direct memory access capabilites: local
(distributed memory systems) or global (shared memory systems). We have therefore
chosen to explicitly program for parallelism, rather than relying upon parallelism via
compiler directives (as in HPF2) or parallelism switches. Explicit parallelism demands
greater initial software design and development, but results in more portable and efficiently
par allelized soft ware.

We have designed parallelism into our software by separating all communication from
computation, then parallelizing the communication via the explicit passing of messages
between processors. Message passing, accomplished by calls to the MPI library [8], is
necessary when the requested data does not reside in local memory owned by the current
processor. For the unstructured meshes utilized by Telluride, indirect addressing is
required to retrieve neighboring cell information. For example, the following code

FACE-LOOP: do f = 1,nfc
CELL-LOOP: do i = 1,ncells

end do CELL-LOOP
Neighbor,Volume(f , i) = Cell(Mesh(i)%Ngbr,Cell(f))%Volume

end do FACE-LOOP

2See HUH. crpc . r i c e . edu/HPFF/home .html for further information on HPF.

5

returns in array Neighbor-Volume the volume of cell (face) neighbors. This information
will not be available to the processor owning cell i if the data for the face neighbor f of cell
i resides on another processor. The needed data must first be retrieved from all relevant
processors into a local buffer.

Explicit parallelism of this gather operation is accomplished as follows: buffers to hold
the incoming and outgoing off-processor data are first allocated; outgoing buffer data is then
assimilated and sent; off-processor data is received into the incoming buffer; and, finally,
indirect addressing from either the incoming buffer or the original source array. Rather
than inserting these constructs wherever indirect addressing operations are needed, we
have replaced them with calls to various gather/scatter module procedures. For example,
the loop above now becomes:

use gs-module, only: EE-GATHER
call EE-GATHER (Neighbor-Volume , Cell%Volume , Mesh)
where EE-GATHER is a generic module procedure (in gsaodule) that performs all the nec-
essary indirect addressing and message passing functions required to gather CellXVolume
data and return it in Neighbor-Volume.

By invoking gather/scatter module procedures, platform-specific explicit parallelism
(message passing) is effectively hidden, instead of being littered throughout the entire
source; and, communication is decoupled from all loops performing real computation, which
allows compiler optimization to efficiently fuse large code blocks. The principal drawback
to this approach is the local allocation of temporary “container arrays” required to hold the
output returned by the gather/scatter procedures. We have traded memory in return for
modular, portable, and efficient parallelization and computation loops that can be highly
optimized.

4.1 Gather/Scatter Modules.
To illustrate the functionality of our gather/scatter modules, consider the example source
code below, taken from our current gather module. First, we define an EE-GATHER generic
procedure that allows the host application to gather scalar or vector data that is of
type integer, logical and single/double precision real. This polymorphism enables the
applications programmer to use only the EE-GATHER calling protocol, regardless of the data
being gathered. Now consider the GATHERDOUBLE module procedure below, which gathers
double precision real scdar data from array Src into array Dest:

SUBROUTINE GATHER-DOUBLE (Dest, Src, Mesh)
imp1 i c it none
real (double-kind) , dimension(: , :) , intent(0UT) : : Dest
type(MESH,CONNECTIVITY), dimension(SIZE(Dest,2)), intent(1N) :: Mesh
real(doub1e-kind), dimension(:), intent(1N) : : Src
integer(int,kind) :: c, f
FACE-LOOP: do f = l,SIZE(Dest,l)

end do FACE-LOOP
return

Dest (f , : = Src(Mesh%Ngbr,cell(f))

END SUBROUTINE GATHER-DOUBLE

This simple procedure is merely a wrapper around the indirect addressing code shown in
the NEIGHBOR-VOLUME loop above. If the memory is distributed across processors, however,

6

explicit parallelization of this procedure is not trivial. Parallel versions of our gather/scatter
procedures rely upon PGSLib to do the interprocessor communication, as shown next.

4.2
An explicitly parallel version of the GATHERDOUBLE module procedure above now becomes:

Parallel Gather/Scatter with PGSLib [7]

BUFFER-CELLS: do c = 1, Trace%N-Duplicate
BUFFER-FACES: do f = 1, SIZE(Src,l)

end do BUFFER-FACES
Comm,Buffer(f ,c) = Src(f ,Trace%Duplicate,Indices(c))

end do BUFFER-CELLS
call PGSLIB-GATHER-BUFFER (Off ,Buf f er , Comm-Buf f er , Trace)
CELL-LOOP: do c = 1, SIZE(Dest,2)

FACE-LOOP: do f = 1, SIZE(Dest,l)
if (BTEST(Mesh(c)%Ngbr,PE-Flag, C11NgbrXBj.t (f))) then

else

end if

Dest(f ,c) = Src(Mesh(c)%Ngbr-Face(f) , Mesh(c)%Ngbr,Cell(f))

Dest (f , c) = Off -Buf f er (Mesh(c) %Ngbr-Face(f) , Mesh(c) %Ngbr-Cell (f)

end do FACE-LOOP
end do CELL-LOOP

The only difference between this parallel gather operation relative to the previous serial
example is that the gather must access a different buffer (OffBuffer) if the requested
information is off-processor. Before this operation can be performed, however, the off-
processor data must be assimilated and communicated between processors, which is the
purpose of the first loop and PGSLib call. MPI-based message passing is occurs inside
the PGSLib call.

5
Our implicit Navier-Stokes and heat transfer/solidification algorithms require the solution
of linear systems of equations. A given time step in Telluride can require several matrix
solutions, so the majority of our solution algorithm is spent in a linear solver library known
as JTpackSO [21]. The package is also written in object-based F90, and is also explicitly
parallelized via calls to gather/scatter modules that rely on PGSLib [7] to perform the
message passing. Telluride interfaces to JTpackSO by linking to its library and “using”
its module information files.

We currently solve our systems in parallel over the entire mesh, rather than invoking
a Schwarz decomposition 121. For orthogonal meshes, we store the matrix and use
preconditioned CG to solve the system. For generally nonorthogonal, unstructured meshes,
we do not store the matrix and use preconditioned GMRES to solve the system. In all
cases, we interface with JTpackSO in matrix-free form, Le., matrix-vector multiplication
is performed with procedures provided by Telluride. All matrix-vector multiplications are
therefore performed in Telluride, enabling control over indirect addressing (hence their
parallelization). This also avoids having to assimilate and store the matrix, which for
a general unstructured mesh is often intractable, especially for our current least-squares
Laplacian operator [I].

Parallel Linear Solutions with JTpackSO [21]

7

TABLE 1
Chalice solidification parallel eficiemies on a shared memory system.a

Processors (ps/cell/cycle) Efficiency
1 5013 1.00

“300 MHz Digital Alphaserver 8400

We have found preconditioning the GMRES solution of our least-squares Laplacian
operator with a low-order operator (one that assumes the mesh to be orthogonal and simply-
connected) to be quite effective. We have additionally found that solving the preconditioner
equation with a loosely-converged CG algorithm yields an order of magnitude speedup over
more traditional preconditioning alternatives.

6
We now present evidence for the excellent parallel efficiencies realized in a real-world
Telluride casting simulation of the cooling and solidification of a copper “chalice”. The
simulation is performed on a multi-processor shared memory3 system. The interested reader
should also consult reference [21] for additional parallel efficiencies obtained for Telluride
implicit heat conduction simulations on both shared and distributed memory systems.

The copper chalice was cast at a LANL foundry in support of the LANL inertial
confinement fusion program. It is essentially a hemispherical shell (two inch diameter) gated
at its pole with a cylindrical “hot top”. The hot top serves to continuously supply liquid
metal to the hemispherical shell during filling/solidification (to avoid shrinkage defects).
The hot top is then cut away and machined after solidification to give the final product
(the hemispherical shell).

To date, two single-processor chalice simulations have been performed: (1) isothermal
filling of the mold cavity (neglecting heat transfer), and (2) cooling/solidifying of the
quiescent liquid copper subsequent to fill. One quadrant of the full geometry is simulated,
with the geometric model and computational mesh (6480 unstructured hex elements) being
generated with the I-DEAS commercial software package. Space unfortunately does not
permit including any chalice simulation results, so the reader is encouraged to consult the
Telluride home page4 for graphical results (including animations).

A higher-resolution result (46,386-cell quadrant) is easily achieved with a parallel chalice
simulation. Using the Chaco [9] decomposition software, we decompose the mesh into an
arbitrary number of submeshes, depending upon the number of processors available to do
the problem (see [all for an example of an eight submesh decomposition). As Table 6
indicates, excellent parallel efficiencies are realized for this Simulation, which is a real-world
example of the types of parallel casting simulations Telluride must perform relative to
an idealized heat conduction problem [21]. Based on these preliminary results, we expect
excellent parallel efficiencies for unstructured mesh casting simulations that make use of
with intelligent mesh decomposition algorithms [9, lo]. We expect further performance

Numerical Example: Copper Chalice Solidification

3300 MHz Digital Alphaserver 8400 (see www .dec. com/info/alphaserver/products. html)
4http: //gnarly. lanl .gov/Telluride/Telluride.html

1

8 .
improvements after efforts have been devoted to single-processor optimization and load
balancing localized models such as interface tracking and phase change.

References

[l] T. J. Barth, Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-
Stokes Equations, Technical Report N92-27677, NASA Ames Research Center, Moffett Field,
CA, 1992.

[2] T. J. Barth, Parallel CFD Algorithms on Unstructured Meshes, Technical Report AGARD
Publication R-807, lecture notes presented at the VKI/NASA/AGARD Lecture Series on
Parallel Computing, 1995.

[3] C. Beckermann and C. Y. Wang, MuMiphase/Scale Modeling of Alloy Solidification, Annual
Review of Heat Transfer, 6 (1995), pp. 115-197.

[4] J . B. Bell and D. L. Marcus, A Second-Order Projection Method for Variable Density Flows,
Journal of Computational Physics, 101 (1992), pp. 334-348.

[5] J. U. Brackbill, D. B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface
Tension, Journal of Computational Physics, 100 (1992), pp. 335-354.

[6] T. M. R. Ellis, I. R. Philips, and T. M. Lahey, Fortran 90 Programming, Addison-Wesley,
Reading, MA, 1994.

[7] R. C. Ferrell, D. B. Kothe, and J. A. Turner, Developing Portable, Parallel Unstructured Mesh
Simulations, in Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific
Computing (this conference), Minneapolis, MN, 1997.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press, Cambridge,, MA, 1994.

[9] B. Hendrickson and R. Leland, The Chaco User's Guide: Version 2.0, Techical Report
SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1995.

[lo] G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregu-
lar Graphs, Technical Report TR 95-035, Department of Computer Science, University of Min-
nesota, Minneapolis, MN, 1995 (see also www. cs .umn. edu/-karypis/metis/metis .html).

[ll] D. B. Kothe and R. C. Mjolsness, RIPPLE: A New Model for Incompressible Flows with Free
Surfaces, AIAA Journal, 30 (1992), pp. 2694-2700.

[12] D. B. Kothe, et al., Computer Simulation of Metal Casting Processes: A New Approach,
Technical Report LALP-95-197, Los Alamos National Laboratory, Los Alamos, NM, 1995.

[13] D. B. Kothe, et al., Volume Tracking of Interfaces Having Surface Tension in Two and
Three Dimensions, Technical Report AIAA 96-0859, presented at the 34th Aerospace Sciences
Meeting and Exhibit, Reno, NV, 1996.

[14] R. Lutowski, Object-Oriented Software Development with Daditional Languages, Fortran
Forum, 14 (1995), pp. 13-15.

[15] S. McConnell, Code Complete, Microsoft Press, Redmond, WA, 1993.
[la] S. McConnell, Rapid Development, Microsoft Press, Redmond, WA, 1996.
[17] J. N i and C. Beckermann, Modeling of Globulitic Alloy Solidification With Convection, Journal

of Materials Processing and Manufacturing Science, 2 (1993), pp. 217-231.
[18] A. V. Reddy, D. B. Kothe, and C. Beckermann, Hzgh Resolution Finite Vohme SimuEations of

Mold Filling and Binary Alloy Solidification on Unstructured 3-0 Meshes, presented at the 4th
Decennial International Conference on Solidification Processing, Univ. of Sheffeld, UK, 1997.

[19] W. J. Rider, D. B. Kothe, S. J. MOSSO, J. H. Cerutti, and J. I. Hochstein, Accurate Solution
Algorithms for Incompressible Multiphase Flows, Technical Report AIAA 95-0699, presented
at the 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 1995.

[20] J. S. Saltzman, An Unsplit 3 -0 Upwind Method for Hyperbolic Conservation Laws, Journal of
Computational Physics, 115 (1994), pp. 153-167.

[21] J . A. Turner, R. C. Ferrell, and D. B. Kothe, JTpack90: A Parallel, Object-Based, Fortran 90
Linear Algebra Package, in Proceedings of the 8th SIAM Conference on Parallel Processing for
Scientific Computing (this conference), Minneapolis, MN, 1997.

[22] K. D. Wampler, The Object-Oriented Programming Paradigm (OOPP) and FORTRAN
Programs, Computers in Physics, July/August, (1990), pp. 385-394.

