A parallel, volume-tracking algorithm for unstructured meshes

Abstract

Many diverse areas of industry benefit from the use of volume of fluid methods to predict the movement of materials. Casting is a common method of part fabrication. The accurate prediction of the casting process is pivotal to industry. Mold design and casting is currently considered an art by industry. It typically involves many trial mold designs, and the rejection of defective parts is costly. Failure of cast parts, because residual stresses reduce the part`s strength, can be catastrophic. Cast parts should have precise geometric details that reduce or eliminate the need for machining after casting. Volume of fluid codes will help designers predict how the molten metal fills a mold and where ay trapped voids remain. Prediction of defects due to thermal contraction or expansion will eliminate defective, trial mold designs and speed the parts to market with fewer rejections. Increasing the predictability and therefore the accuracy of the casting process will reduce the art that is involved in mold design and parts casting. Here, recent enhancements to multidimensional volume-tracking algorithms are presented. Illustrations in two dimensions are given. The improvements include new, local algorithms for interface normal constructions and a new full remapping algorithm for time integration. These methods are used on structured and unstructured grids

    Similar works

    Full text

    thumbnail-image