
'LA-UR- 9
Title

Authorfs)

Submitted to

Los Alamos
N A T I O N A L L A B O R A T O R Y

JTpack90: A PARALLEL, OBJECT-BASED, FORTRAN 90 LINEAR
ALGEBRA PACKAGE

J. A. Turner
R. C. Ferrell
D. B. Kothe

Eighth SIAM Conference on Parallel Processing for
Scientific Computing

. . ,_ .

Los Alamos National Laboratory, an affirmative actionlecjual opportunity emp&er, is operated by the University of California for the US. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for US. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the US. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government Neither the United States Government nor any agency thereof, nor
any of their employes, ntake any warranly, express or implied, or ifaumes any legal liabili-
ty or rrsponsibiity for the accuraq, completeness, or usefulness of any information, appa-
ratus, product, or process disdosed, or represents that its use would not infringe privately
owned rights. Reference herein to any spec& aminemal product, pmcess, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendah ‘on, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DXSCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

JTpackSO: A Parallel, Object-Based, Fortran 90 Linear
Algebra Package *

John A. Turner t Robert C. Ferrell Douglas B. Kothe 3

Abstract

We have developed an object-based linear algebra package, currently with emphasis
on sparse Krylov methods, driven primarily by needs of the Los Alamos National
Laboratory parallel unstructured-mesh casting simulation tool Telluride. Support
for a number of sparse storage formats, methods, and preconditioners have been
implemented, driven primarily by application needs. We describe our object-based
Fortran 90 approach, which enhances maintainability, performance, and extensibility,
our parallelisation approach using a new portable gather/scatter library (PGSLib),
current capabilities and future plans, and present preliminary performance results on
a variety of platforms.

1 Introduction
An effort was initiated recently at Los Alamos National Laboratory (LANL) to build
a new 3-D high-resolution tool for simulating casting processes, i.e. the flow of molten
material into molds and the subsequent cooling and solidification of the material. The
simulation process includes incompressible free-surface flow during mold filling, heat
transfer-driven convective flows during solidification, and interface physics such as
surface tension and phase change, all in complex geometries. This tool is known as
Telluride, and is described more fully elsewhere in these proceedings [8].

Several decisions were made early in the design stages of Telluride which initiated
and drove development of JTpackgO.

e An unstructured-mesh finite-volume approach would be used to the complex
geometries that would be modelled.

0 Fortran 90 (F90) was chosen as the implementation language. Though this was
a fairly risky decision at the time due to the relative scarcity of stable compilers,
we felt that the advantages over alternatives warranted the risk. For example,
F90 offers numerous syntactic improvements to Fortran 77 (F77), some of which
will be discussed later. Compared with C++, we like the fact that arrays are
first-class objects in F90, whereas in C++ every code effort seems to have its own
array class. Also, the F90 standard had been approved and was in effect. Though
this is not as much of a problem with C++ as it was when this effort was started,
the standard still has not been finalized. We are now confident that our decision
was the correct one, as F90 compilers have become available for virtually all
platforms, and the syntactic advantages of F90 have, among other things, allowed

'Supported by the Department of Energy Accelerated Strategic Computing Initiative Program (ASCI)
'Los Alamos National Laboratory (LANL), Transport Methods Group (XTM), MS €3226, Los Alamos,

$Cambridge Power Computing Associates, Ltd., 2 Still St., Brookline, MA 02146, ferrellC8cpca.com
sLANL, Fluid Dynamics Group (T-3), MS B216, Los Alamos, NM 87545, dbkOZanl.gov

NM 87545, turnerOZanZ.gov, http: //lune . m s t . lanl .gov/'turner

1

http://ferrellC8cpca.com
http://dbkOZanl.gov
http://turnerOZanZ.gov

2

us to write code which is maintainable and easy for new members to the team to
become productive with.

0 Parallelism would be via explicit message-passing using MPI (Message Passing In-
terface). In addition, the message-passing functionality would be encapsulated in
an F9O-accessible library, thus hiding the details from the higher-level code. This
library is known as PGSLib, and is described elsewhere in these proceedings [2].

0 Robust and efficient solution of large systems 'of linear equations would be
essential, as they would arise in several aspectri of a simulation (e.g. heat
conduction, our projection method for the Navier-Stokes equations, etc.).

One of us1 had developed an F77 package, JTpaclr77 [lo], which implements
a number of Krylov subspace methods for solving lineax systems of equations. Since
that package was being used successfully for a number of efforts internal to LANL, it
made sense to consider it as a candidate from which to build a similar F90 package
for the Telluride effort (and eventually other applications). In addition, although
there are numerous other high-quality packages for iteratively solving systems of linear
equations in other languages, such as ITPACK [7] and NSPCG [6] in F77, AZTEC3 [4]
and PETSc4 [l] in C, and Diffpack5 in C++, we knew of no such effort in F90. So
development of JTpack9O began with JTpack?? as a starting point, driven by the
needs of Telluride.

2 Overview of JTpackSO
2.1 Design Goals
Although JTpack9O is a tool driven by the needs of a particular application, we
nevertheless wanted to design an infrastructure that would be general enough and
flexible enough to allow JTpack9O to be used by other codes as well. So some of the
design goals of JTpack9O were to provide

support for basic sparse storage formats within a framework that would allow new

0 basic solvers and preconditioners, again within a framework that would allow new
formats to be added easily,

methods and preconditioners to be added easily,
0 support for matrix-free operation (in which the coefficient is not made available

a support for application-specific preconditioning.
to JTpackQO), and finally,

The last two items are particularly important for Telliiride, since explicit construc-
tion of the coefficient is difficult if not impossible for some of the operators in Telluride,
and since in most cases custom preconditioners based on knowledge of the underlying
physics or numerics are far superior to general preconditi'oners.

2.2 Status
JTpack9O currently provides several basic Krylov subspace iterative solvers (e.g. CG,
GMRES, TFQMR, etc.), along with a number of preconditioners (e.g. IC, ILU,
multistep weighted Jacobi and SSOR, etc.). These are unremarkable, and descriptions
can be found elsewhere (e.g. [9]). More interesting is the object-based infrastructure

JAT
2http://lune.mst.lanl.gov/'turner/JTpack.html
3http://naa. cs. sandia. gov/HPCCIT/aztec .html/
'http: //uaa.mcs . anl. gov/petsc/petsc . html
6http://aaa.oslo.sintef .no/diffpack/

3

within which these methods and preconditioners are embedded, and which allows easy
implementation of new storage formats, methods, and preconditioners.

A great deal of effort has not been expended on general preconditioners, since we
knew that we would be using JTpackQO primarily in matrix-free mode with Telluride
and would be using preconditioners customized for the physics / numerics at hand.

3 Object-Based Design
Although even JTpack77 implements a form of object-based design, it is necessarily
crude due to the lack of syntactic support for such programming in F77 (for more on
how this is accomplished in JTpack77, see [lo]). F90 provides a number of syntactic
advances over F77, including:

0 derived types, similar to C structures, which provide user-defined types which

0 generic procedures, which provide polymorphism,
0 array-valued functions,
0 overloading of intrinsics, and
0 modules, which allow encapsulation and access control via public and private

may consist of entities of various types,

attributes.

Modules in particular are a powerful addition to the language, and although they
can be used in a number of ways, they are often used to group entities that are related
in some manner. Two extreme options for a package such as JTpackQO would be:

e Bundle routines functionally. That is, all routines that perform matrix-vector
multiplication for the various sparse storage types could be grouped in a single
module. That module would then be used by any routine needing to perform
matrix-vector multiplication.

0 Use modules to create "classes". That is, bundle a type definition, along with all
the routines necessary to perform operations using that type.

In JTpackgO we have chosen primarily the latter approach. Although all routines
in JTpackQO are encapsulated in modules, there are two primary types of modules.

0 "Class" modules each contain a derived-type definition for a sparse storage type,
along with all the routines to operate on that type. An edited version of the
JTpackQO module that defines the class for the ELLPACK-ITPACK (ELL)
storage format 191 is shown below.

module JT-ELL-module
impl ic i t none
type JT-ELL-matrix

real , dimension(:,:), pointer :: values
in teger , dimension(:, :> , pointer : : map

end type JT-ELL-matrix
in te r face MatMul

module procedure Ax
end in te r face
pr iva te
publ ic :: JT-ELL-matrix, MatMul

funct ion Ax(a,x)
contains

type(JT-ELL-matrix), i n t en t (in) :: a
real , i n t en t (in) , dimension(:) :: x

4

real, dimension(SIZE(x)) :: Ax
integer :: j

Ax = zero
do j=l,SIZE(a%values, dim=2)

end do
where (axmap(:, j) /= 0) Ax = Ax + a'r(values(:, j)*x(a%map(: , j))

return
end function Ax

end module JT-ELL-module

The deftnition of the JTZLLmatrix type appears in the specification portion of
the module, and consists of two rank-2 arrays, one real (for the values of the
matrix) and one integer (for the column indices).
Only the function for performing matrix-vector multiplication using ELL storage
is shown. The real module also contains routines for assigning, loading, dumping,
writing, extracting the diagonal from, computing the norm of, computing an
incomplete factorization of, etc. , an ELL object.
Note that the FSO intrinsic for performing matrix multiplication, MatMul, is
overloaded by defining a new routine to be used when the arguments match
those of the module procedure Ax. Note also that Ax is an array-valued function,
meaning that it returns an array rather than a scalar.

0 "Solver" modules each contain all the routines that implement a particular
algorithm, such as CG, GMRES, etc. A modified version of the JTpack9O
GMRES module is shown below.

module JT-GMRES-module
implicit none
interface JT-GMRES

module procedure GMRES-Full
module procedure GMRES-ELL

end interface
private
public :: JT-GMRES

subroutine GMRES-Full (status, b, control, x, cpu, &
rnormt, errt, rnorm, err, a, ap)

contains

use JT-Full-module
real, intent(in), dimension(:,:) :: a
real, intent(inout1, dimension(:,:) :: ap

#include "GMZES-guts. F90"
end subroutine GMRES-Full
subroutine GMRES-ELL (status, by control, x, cpu, %

rnormt , errt , rnorm, err, a, ap)
use JT-ELL-module
type(JT-ELL-matrix), intent(in) :: a
type(JT-ELL-matrix) , intent (inout) : : ap

#incEude "GMRES-guts .F90"
end subroutine GMFLES-ELL

end module JT-GMFLES-module

Two routines are shown, one for standard, full-storage coefficients and one for
ELL coefficients. Note that the only difference between the two routines is the

u s e statement and the declarations of the arrays. Everything else is common
between the routines, and is hence pulled out and stored in a common file.
Though in an important sense this shows the significant advances in abstraction
allowed by F90, it also illustrates a shortfall, for these cpp acrobatics would not
be necessary if F90 had something akin to C++’s templates.

Note that this is a hybrid approach in that some of the routines dealing with matrices
of a particular storage type reside in the solver modules rather than in the class modules.
This was a concious decision, since it makes adding a new solver much easier at the
expense of requiring slightly more effort when adding a new storage type. With our
approach, to add a new solver one must simply create a new solver module. Adding a
new storage type requires creating a new class module as well as adding a new routine
(though really just a “template” with the correct declarations and an include statement)
to each of the solver modules.

4 Parallelization via PGSLib [2]
Details of our parallelization strategy are given in [8], so we only describe it briefly
here. For JTpack90, PGSLib provides global reduction (e.g. dot product, etc.)
and gather/scatter functionality. The latter is used for the indirect addressing inherent
in forming matrix-vector products using sparse storage for matrices. That is, recall
the matrix-vector kernel for a matrix stored in ELL format shown previously. Using
PGSLib this kernel becomes:

y = zero
c a l l PGSLib-gather (y, x-pe, ja-pe , j a , t r a c e , mask=(ja-pe /= 0))
y-pe = SUM(a-pe*y, dim=2)

where -pe in a variable name denotes the segment of the array local to a particular
processor, and t r a c e is a PGSLib type containing information about how the data is
distributed, etc.

5 Results
In this section we present parallel results using Telluride. Note that although solution
of the linear systems represent the majority of time spent in the simulations, all results
are for the whole code, not just JTpackQO. JTpackQO was operated in matrix-free
mode using reverse communication. Global reduction and gatherjscatter functionality
was provided by PGSLib, and no preconditioning is used.

5.1 Implicit Heat Conduction on a Regularly-Connected Mesh
Consider the following conduction test problem, which has an exact analytic solution [5].
Heat is introduced at time zero to an initially cold brick of material on its ymax zz face
with a high applied temperature. Both yz faces and the ymin zz face are maintained cold
with a low applied temperature, while the two zy faces are insulated. The temperature
within the brick attains a steady state distribution, which is computed in Telluride by
marching the unsteady heat conduction equation forward in time until the temperature
distribution does not change. Steady state was attained in these simulations after five
time steps, but one large time step, however, could also achieve the desired result since
the Telluride conduction algorithm is fully implicit. The linear system of equations
are solved by JTpackQO using CG.

First consider a parallel simulation of this problem on a multi-processor shared-
memory Digital Alphaserver 8400. Here we partition the brick with a 16 x 16 x 192
mesh that is block decomposed evenly along the z axis, Le. , each processor receives
a 16 x 16 x N, mesh, where N, is some subset of the total mesh in the z direction
(192). Table 1 displays the excellent parallel effciencies realized for this problem on

5

F

6

TABLE 1
Implicit heat flow on 16 x 16 x 192 mesh (300 MHz Digitd Alphaserver 8400). a

Processors (ps/cell/cycle) Emciency
1 583
2 258
3 162
4 129
6 93 1.04
8 69

‘http: //unn.dec . com/info/alphasei:ver/
products.html

TABLE 2
Implicit heat flow on 16 x 16 x 320 mesh (67 MHz IBM SP.2). a

2
10
20

Processors (ps/cell/cycle) Efflciency

0.90
0.86

%ttp://aaa.rs6000.ibm.com/hardaare/
largescale/index.html

this architecture. The superlinear speedups achieved are likely due to cache effects
(decreased cache utilization on fewer processors).

Now consider the parallel simulation on a multi-processor distributed-memory IBM
SP2. Here we partition the brick with a 16 x 16 x 320 mesh, and again block decompose
the mesh evenly along the z axis. The parallel efficiencies, as shown in Table 2, are
still quite high, being >85% for all processor numbers tested. This performance is
surprising in light of the fact that this mesh is treated a.s fully unstructured (despite its
being simply-connected), necessitating the use of many parallel gather/scatter functions
from PGSLib [2].

Though these are encouraging results, we emphasirie that these represent a rather
idealized problem in that the decomposition is optimal. A somewhat more realistic
result is given in the next section.

5.2
Figure 5.2 shows a 6480-element unstructured hex mesh for a part cast for the LANL
inertial confinement fusion program. The chalice consikts of a hemispherical shell two
inches in diameter. The shell is gated at its pole with a cylindrical @hot top” one inch
in diameter and about 1.5 inches tall. The hot top serves to continuously supply liquid
metal to the hemispherical shell during filling/solidification (to avoid shrinkage defects).
The hot top is then cut away and machined after solidification to give the final product
(the hemispherical shell). Here the mesh has been decomposed by CHACO [3] for eight

Implicit Heat Conduction on an Unstructured Hex Mesh

FIG. 1. The chalice mesh, decomposed for 8 processors by CHACO (31.

TABLE 3
Implicit heat flow on 46,386-cell chalice mesh (300 MHz Digital Alphaserver 8400). a

7

CPU Time
Processors (ps/cell/cycle) Efficiency

1 5013 1 .oo
2 2169 1.15
4 1237 1.03
8 721 0.87

ahttp://aua.dec.com/info/alphaserver/
products.htm1

processors.
Table 3 shows results of an implicit heat flow calculation on a finer mesh, consisting

of 46,386 unstructured hex elements, again on a Digital Alphaserver 8400. Again we see
excellent parallel efficiencies, which is encouraging since this is a more realistic example
of the types of parallel casting simulations Telluride must perform.

6 Future Work
We have shown that JTpack90, in conjunction with PGSLib, achieves encouraging
parallel efficiencies for both simple and realistic problems within Telluride. Neverthe-
less, much work remains. Preconditioning is one area on which we have only just begun

8

to focus attention. For example, while we have had success using a loosely-converged
CG solution of a low-order approximation to the full operator to precondition the CG
solutions in our projection flow algorithm, we also want to examine other strategies,
especially multilevel approaches.

References

[l] S. Balay, W. Gropp, L. C. McInnes, and B. Smith, PETSc 2.0 users manual, Tech.
Rep. ANL-95/11, Argonne National Laboratory, Oct 1996.

[2] R. C. Ferrell, J. A. Turner, and D. B. Kothe, Developing portable, parallel
unstructured mesh simulations, in Eighth SIAM Conference on Parallel Processing
for Scientific Computing (this conference), Minneapolis, MN, 1997, SIAM.

[3] B. Hendrickson and R. Leland, The Chaco user’s guide: Version 2.0, Technical
Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1995.

[4] S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro, Aztec user’s guide (version
1,0), Tech. Rep. SAND95-1559, Sandia National Laboratory, 1995.

[5] F. P. Incropera and D. P. De Witt, findamentab of Heat and Mass TTanSfeT,
John Wiley and Sons, NY, 3rd ed., 1990.

[6] D. R. Kincaid, T. C . Oppe, and W. D. Joubert, An introduction to the NSPCG
software package, Int. J. Num. Meth. Eng, 27 (1989), pp. 589-608.

[7] D. R. Kincaid, J. R. Respess, D. M. Young, and R. G. Grimes, ITPACK 2C: A
FORTRAN package for solving large sparse linear systems by adaptive accelerated
itemtive methods, ACM Trans. Math. Software, 8 (1982), pp. 302-322.

[8] D. B. Kothe, R. C . Ferrell, S. J. MOSSO, and J. A. Turner, A high-resolution
finite-volume method for eficient parallel simulation of casting processes on
unstructured meshes, in Eighth SIAM Conference on Parallel Processing for
Scientific Computing (this conference), Minneapolis, MN, 1997, SIAM.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company,
Boston, MA, 1996.

[lo] J. A. Turner, JTpack77 (LA-CC-93-5) - a Fortran 77 collection of linear algebra
routines, Tech. Rep. LA-UR-97-2, Los Alamos National Laboratory, Los Alamos,
NM, Jan. 1996.

