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JTpackSO: A Parallel, Object-Based, Fortran 90 Linear 
Algebra Package * 

John A. Turner t Robert C. Ferrell Douglas B. Kothe 3 

Abstract 

We have developed an object-based linear algebra package, currently with emphasis 
on sparse Krylov methods, driven primarily by needs of the Los Alamos National 
Laboratory parallel unstructured-mesh casting simulation tool Telluride. Support 
for a number of sparse storage formats, methods, and preconditioners have been 
implemented, driven primarily by application needs. We describe our object-based 
Fortran 90 approach, which enhances maintainability, performance, and extensibility, 
our parallelisation approach using a new portable gather/scatter library (PGSLib), 
current capabilities and future plans, and present preliminary performance results on 
a variety of platforms. 

1 Introduction 
An effort was initiated recently at Los Alamos National Laboratory (LANL) to build 
a new 3-D high-resolution tool for simulating casting processes, i.e. the flow of molten 
material into molds and the subsequent cooling and solidification of the material. The 
simulation process includes incompressible free-surface flow during mold filling, heat 
transfer-driven convective flows during solidification, and interface physics such as 
surface tension and phase change, all in complex geometries. This tool is known as 
Telluride, and is described more fully elsewhere in these proceedings [8]. 

Several decisions were made early in the design stages of Telluride which initiated 
and drove development of JTpackgO. 

e An unstructured-mesh finite-volume approach would be used to the complex 
geometries that would be modelled. 

0 Fortran 90 (F90) was chosen as the implementation language. Though this was 
a fairly risky decision at the time due to the relative scarcity of stable compilers, 
we felt that the advantages over alternatives warranted the risk. For example, 
F90 offers numerous syntactic improvements to Fortran 77 (F77), some of which 
will be discussed later. Compared with C++, we like the fact that arrays are 
first-class objects in F90, whereas in C++ every code effort seems to have its own 
array class. Also, the F90 standard had been approved and was in effect. Though 
this is not as much of a problem with C++ as it was when this effort was started, 
the standard still has not been finalized. We are now confident that our decision 
was the correct one, as F90 compilers have become available for virtually all 
platforms, and the syntactic advantages of F90 have, among other things, allowed 
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us to write code which is maintainable and easy for new members to the team to 
become productive with. 

0 Parallelism would be via explicit message-passing using MPI (Message Passing In- 
terface). In addition, the message-passing functionality would be encapsulated in 
an F9O-accessible library, thus hiding the details from the higher-level code. This 
library is known as PGSLib, and is described elsewhere in these proceedings [2]. 

0 Robust and efficient solution of large systems 'of linear equations would be 
essential, as they would arise in several aspectri of a simulation (e.g. heat 
conduction, our projection method for the Navier-Stokes equations, etc. ). 

One of us1 had developed an F77 package, JTpaclr77 [lo], which implements 
a number of Krylov subspace methods for solving lineax systems of equations. Since 
that package was being used successfully for a number of efforts internal to LANL, it 
made sense to consider it as a candidate from which to build a similar F90 package 
for the Telluride effort (and eventually other applications). In addition, although 
there are numerous other high-quality packages for iteratively solving systems of linear 
equations in other languages, such as ITPACK [7] and NSPCG [6] in F77, AZTEC3 [4] 
and PETSc4 [l] in C, and Diffpack5 in C++, we knew of no such effort in F90. So 
development of JTpack9O began with JTpack?? as a starting point, driven by the 
needs of Telluride. 

2 Overview of JTpackSO 
2.1 Design Goals 
Although JTpack9O is a tool driven by the needs of a particular application, we 
nevertheless wanted to design an infrastructure that would be general enough and 
flexible enough to allow JTpack9O to be used by other codes as well. So some of the 
design goals of JTpack9O were to provide 

support for basic sparse storage formats within a framework that would allow new 

0 basic solvers and preconditioners, again within a framework that would allow new 
formats to be added easily, 

methods and preconditioners to be added easily, 
0 support for matrix-free operation (in which the coefficient is not made available 

a support for application-specific preconditioning. 
to JTpackQO), and finally, 

The last two items are particularly important for Telliiride, since explicit construc- 
tion of the coefficient is difficult if not impossible for some of the operators in Telluride, 
and since in most cases custom preconditioners based on knowledge of the underlying 
physics or numerics are far superior to general preconditi'oners. 

2.2 Status 
JTpack9O currently provides several basic Krylov subspace iterative solvers (e.g.  CG, 
GMRES, TFQMR, etc. ), along with a number of preconditioners (e.g. IC, ILU, 
multistep weighted Jacobi and SSOR, etc. ). These are unremarkable, and descriptions 
can be found elsewhere (e.g.  [9]). More interesting is the object-based infrastructure 
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within which these methods and preconditioners are embedded, and which allows easy 
implementation of new storage formats, methods, and preconditioners. 

A great deal of effort has not been expended on general preconditioners, since we 
knew that we would be using JTpackQO primarily in matrix-free mode with Telluride 
and would be using preconditioners customized for the physics / numerics at hand. 

3 Object-Based Design 
Although even JTpack77 implements a form of object-based design, it is necessarily 
crude due to the lack of syntactic support for such programming in F77 (for more on 
how this is accomplished in JTpack77, see [lo]). F90 provides a number of syntactic 
advances over F77, including: 

0 derived types, similar to C structures, which provide user-defined types which 

0 generic procedures, which provide polymorphism, 
0 array-valued functions, 
0 overloading of intrinsics, and 
0 modules, which allow encapsulation and access control via public and private 

may consist of entities of various types, 

attributes. 

Modules in particular are a powerful addition to the language, and although they 
can be used in a number of ways, they are often used to group entities that are related 
in some manner. Two extreme options for a package such as JTpackQO would be: 

e Bundle routines functionally. That is, all routines that perform matrix-vector 
multiplication for the various sparse storage types could be grouped in a single 
module. That module would then be used by any routine needing to perform 
matrix-vector multiplication. 

0 Use modules to create "classes". That is, bundle a type definition, along with all 
the routines necessary to perform operations using that type. 

In JTpackgO we have chosen primarily the latter approach. Although all routines 
in JTpackQO are encapsulated in modules, there are two primary types of modules. 

0 "Class" modules each contain a derived-type definition for a sparse storage type, 
along with all the routines to operate on that type. An edited version of the 
JTpackQO module that defines the class for the ELLPACK-ITPACK (ELL) 
storage format 191 is shown below. 

module JT-ELL-module 
impl ic i t  none 
type JT-ELL-matrix 

real ,  dimension(:,:), pointer  :: values 
in teger ,  dimension(:, :> , pointer  : : map 

end type JT-ELL-matrix 
in te r face  MatMul 

module procedure Ax 
end in te r face  
pr iva te  
publ ic  :: JT-ELL-matrix, MatMul 

funct ion Ax(a,x) 
contains 

type(JT-ELL-matrix), i n t en t ( in )  :: a 
real ,  i n t en t ( in ) ,  dimension(:) :: x 
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real, dimension(SIZE(x)) :: Ax 
integer :: j 

Ax = zero 
do j=l,SIZE(a%values, dim=2) 

end do 
where (axmap(:, j) /= 0) Ax = Ax + a'r(values(:, j)*x(a%map( : , j)) 

return 
end function Ax 

end module JT-ELL-module 

The deftnition of the JTZLLmatrix type appears in the specification portion of 
the module, and consists of two rank-2 arrays, one real (for the values of the 
matrix) and one integer (for the column indices). 
Only the function for performing matrix-vector multiplication using ELL storage 
is shown. The real module also contains routines for assigning, loading, dumping, 
writing, extracting the diagonal from, computing the norm of, computing an 
incomplete factorization of, etc. , an ELL object. 
Note that the FSO intrinsic for performing matrix multiplication, MatMul, is 
overloaded by defining a new routine to be used when the arguments match 
those of the module procedure Ax. Note also that Ax is an array-valued function, 
meaning that it returns an array rather than a scalar. 

0 "Solver" modules each contain all the routines that implement a particular 
algorithm, such as CG, GMRES, etc. A modified version of the JTpack9O 
GMRES module is shown below. 

module JT-GMRES-module 
implicit none 
interface JT-GMRES 

module procedure GMRES-Full 
module procedure GMRES-ELL 

end interface 
private 
public :: JT-GMRES 

subroutine GMRES-Full (status, b, control, x, cpu, & 
rnormt, errt, rnorm, err, a, ap) 

contains 

use JT-Full-module 
real, intent(in), dimension(:,:) :: a 
real, intent(inout1, dimension(:,:) :: ap 

#include "GMZES-guts. F90" 
end subroutine GMRES-Full 
subroutine GMRES-ELL (status, by control, x, cpu, % 

rnormt , errt , rnorm, err, a, ap) 
use JT-ELL-module 
type(JT-ELL-matrix), intent(in) :: a 
type( JT-ELL-matrix) , intent (inout) : : ap 

#incEude "GMRES-guts .F90" 
end subroutine GMFLES-ELL 

end module JT-GMFLES-module 

Two routines are shown, one for standard, full-storage coefficients and one for 
ELL coefficients. Note that the only difference between the two routines is the 



u s e  statement and the declarations of the arrays. Everything else is common 
between the routines, and is hence pulled out and stored in a common file. 
Though in an important sense this shows the significant advances in abstraction 
allowed by F90, it also illustrates a shortfall, for these cpp acrobatics would not 
be necessary if F90 had something akin to C++’s templates. 

Note that this is a hybrid approach in that some of the routines dealing with matrices 
of a particular storage type reside in the solver modules rather than in the class modules. 
This was a concious decision, since it makes adding a new solver much easier at the 
expense of requiring slightly more effort when adding a new storage type. With our 
approach, to add a new solver one must simply create a new solver module. Adding a 
new storage type requires creating a new class module as well as adding a new routine 
(though really just a “template” with the correct declarations and an include statement) 
to each of the solver modules. 

4 Parallelization via PGSLib [2] 
Details of our parallelization strategy are given in [8], so we only describe it briefly 
here. For JTpack90, PGSLib provides global reduction (e.g. dot product, etc. ) 
and gather/scatter functionality. The latter is used for the indirect addressing inherent 
in forming matrix-vector products using sparse storage for matrices. That is, recall 
the matrix-vector kernel for a matrix stored in ELL format shown previously. Using 
PGSLib this kernel becomes: 

y = zero  
c a l l  PGSLib-gather (y, x-pe,  ja-pe ,  j a ,  t r a c e ,  mask=(ja-pe /= 0)) 
y-pe = SUM(a-pe*y, dim=2) 

where -pe in a variable name denotes the segment of the array local to a particular 
processor, and t r a c e  is a PGSLib type containing information about how the data is 
distributed, etc. 

5 Results 
In this section we present parallel results using Telluride. Note that although solution 
of the linear systems represent the majority of time spent in the simulations, all results 
are for the whole code, not just JTpackQO. JTpackQO was operated in matrix-free 
mode using reverse communication. Global reduction and gatherjscatter functionality 
was provided by PGSLib, and no preconditioning is used. 

5.1 Implicit Heat Conduction on a Regularly-Connected Mesh 
Consider the following conduction test problem, which has an exact analytic solution [5]. 
Heat is introduced at time zero to an initially cold brick of material on its ymax zz face 
with a high applied temperature. Both yz faces and the ymin zz face are maintained cold 
with a low applied temperature, while the two zy faces are insulated. The temperature 
within the brick attains a steady state distribution, which is computed in Telluride by 
marching the unsteady heat conduction equation forward in time until the temperature 
distribution does not change. Steady state was attained in these simulations after five 
time steps, but one large time step, however, could also achieve the desired result since 
the Telluride conduction algorithm is fully implicit. The linear system of equations 
are solved by JTpackQO using CG. 

First consider a parallel simulation of this problem on a multi-processor shared- 
memory Digital Alphaserver 8400. Here we partition the brick with a 16 x 16 x 192 
mesh that is block decomposed evenly along the z axis, Le.  , each processor receives 
a 16 x 16 x N, mesh, where N, is some subset of the total mesh in the z direction 
(192). Table 1 displays the excellent parallel effciencies realized for this problem on 
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TABLE 1 
Implicit heat flow on 16 x 16 x 192 mesh (300 MHz Digitd Alphaserver 8400). a 

Processors (ps/cell/cycle) Emciency 
1 583 
2 258 
3 162 
4 129 
6 93 1.04 
8 69 

‘http: //unn.dec . com/info/alphasei:ver/ 
products.html 

TABLE 2 
Implicit heat flow on 16 x 16 x 320 mesh (67 MHz IBM SP.2). a 

2 
10 
20 

Processors (ps/cell/cycle) Efflciency 

0.90 
0.86 

%ttp://aaa.rs6000.ibm.com/hardaare/ 
largescale/index.html 

this architecture. The superlinear speedups achieved are likely due to cache effects 
(decreased cache utilization on fewer processors). 

Now consider the parallel simulation on a multi-processor distributed-memory IBM 
SP2. Here we partition the brick with a 16 x 16 x 320 mesh, and again block decompose 
the mesh evenly along the z axis. The parallel efficiencies, as shown in Table 2, are 
still quite high, being >85% for all processor numbers tested. This performance is 
surprising in light of the fact that this mesh is treated a.s fully unstructured (despite its 
being simply-connected), necessitating the use of many parallel gather/scatter functions 
from PGSLib [2]. 

Though these are encouraging results, we emphasirie that these represent a rather 
idealized problem in that the decomposition is optimal. A somewhat more realistic 
result is given in the next section. 

5.2 
Figure 5.2 shows a 6480-element unstructured hex mesh for a part cast for the LANL 
inertial confinement fusion program. The chalice consikts of a hemispherical shell two 
inches in diameter. The shell is gated at its pole with a cylindrical @hot top” one inch 
in diameter and about 1.5 inches tall. The hot top serves to continuously supply liquid 
metal to the hemispherical shell during filling/solidification (to avoid shrinkage defects). 
The hot top is then cut away and machined after solidification to give the final product 
(the hemispherical shell). Here the mesh has been decomposed by CHACO [3] for eight 

Implicit Heat Conduction on an Unstructured Hex Mesh 



FIG. 1. The chalice mesh, decomposed for 8 processors by  CHACO (31. 

TABLE 3 
Implicit heat flow on 46,386-cell chalice mesh (300 MHz Digital Alphaserver 8400). a 
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CPU Time 
Processors (ps/cell/cycle) Efficiency 

1 5013 1 .oo 
2 2169 1.15 
4 1237 1.03 
8 721 0.87 

ahttp://aua.dec.com/info/alphaserver/ 
products.htm1 

processors. 
Table 3 shows results of an implicit heat flow calculation on a finer mesh, consisting 

of 46,386 unstructured hex elements, again on a Digital Alphaserver 8400. Again we see 
excellent parallel efficiencies, which is encouraging since this is a more realistic example 
of the types of parallel casting simulations Telluride must perform. 

6 Future Work 
We have shown that JTpack90, in conjunction with PGSLib, achieves encouraging 
parallel efficiencies for both simple and realistic problems within Telluride. Neverthe- 
less, much work remains. Preconditioning is one area on which we have only just begun 
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to focus attention. For example, while we have had success using a loosely-converged 
CG solution of a low-order approximation to the full operator to precondition the CG 
solutions in our projection flow algorithm, we also want to examine other strategies, 
especially multilevel approaches. 
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