67 research outputs found

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Observation Of Very High Energy Cosmic-ray Families In Emulsion Chambers At High Mountain Altitudes (i)

    Get PDF
    Characteristics of cosmic-ray hadronic interactions in the 1015 - 1017 eV range are studied by observing a total of 429 cosmic-ray families of visible energy greater than 100 TeV found in emulsion chamber experiments at high mountain altitudes, Chacaltaya (5200 m above sea level) and the Pamirs (4300 m above sea level). Extensive comparisons were made with simulated families based on models so far proposed, concentrating on the relation between the observed family flux and the behaviour of high-energy showers in the families, hadronic and electromagnetic components. It is concluded that there must be global change in characteristics of hadronic interactions at around 1016 eV deviating from thise known in the accelerator energy range, specially in the forwardmost angular region of the collision. A detailed study of a new shower phenomenon of small-pT particle emissions, pT being of the order of 10 MeV/c, is carried out and its relation to the origin of huge "halo" phenomena associated with extremely high energy families is discussed as one of the possibilities. General characteristics of such super-families are surveyed. © 1992.3702365431Borisov, (1981) Nucl. Phys., 191 BBaybrina, (1984) Trudy FIAN 154, p. 1. , [in Russian], Nauka, MoscowLattes, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151Hasegawa, ICR-Report-151-87-5 (1987) presented at FNAL CDF Seminar, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Yamashita, Ohsawa, Chinellato, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 30. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 1. , Tokyo, 1984Baradzei, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 136. , Tokyo, 1984Yamashita, (1985) J. Phys. Soc. Jpn., 54, p. 529Bolisov, (1984) Proc. 3rd Int. Symp. on Cosmic rays and Particle Physics, p. 248. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of TokyoTamada, Tomaszewski, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 324. , Lodz, 1988, Inst. for Cosmic Ray Research, Univ. of Tokyo, PolandHasegawa, (1989) ICR-Report-197-89-14, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Okamoto, Shibata, (1987) Nucl. Instrum. Methods, 257 A, p. 155Zhdanov, (1980) FIAN preprint no. 45, , Lebedev Physical Institute, MoscowSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, 76, p. 111Nikolsky, (1975) Izv. Akad. Nauk. USSR Ser. Fis., 39, p. 1160Burner, Energy spectra of cosmic rays above 1 TeV per nucleon (1990) The Astrophysical Journal, 349, p. 25Takahashi, (1990) 6th Int. Symp. on Very High Energy Cosmic-ray Interactions, , Tarbes, FranceRen, (1988) Phys. Rev., 38 D, p. 1404Alner, The UA5 high energy simulation program (1987) Nuclear Physics B, 291 B, p. 445Bozzo, Measurement of the proton-antiproton total and elastic cross sections at the CERN SPS collider (1984) Physics Letters B, 147 B, p. 392Wrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 56. , NASA Conference Publication, Washington, D.CWrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 328. , NASA Conference Publication, Washington, D.CMukhamedshin, (1984) Trudy FIAN, 154, p. 142. , Nauka, Moscow, [in Russian]Dunaevsky, Pluta, Slavatinsky, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 143. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandKaidalov, Ter-Martirosyan, (1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 141. , Nauka, MoscowShabelsky, (1985) preprints LNPI-1113Shabelsky, (1986) preprints LNPI-1224, , Leningrad [in Russian]Hillas, (1979) Proc. 16th Int. Cosmic-Ray Conf., Kyoto, 6, p. 13. , Inst. for Cosmic Ray Research, Univ. of TokyoBorisov, (1987) Phys. Lett., 190 B, p. 226Hasegawa, Tamada, (1990) 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, FranceSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, p. 111Ren, (1988) Phys. Rev., 38 D, p. 1404Dynaevsky, Zimin, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interaction, p. 93. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandDynaevsky, (1990) Proc. 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, France(1989) FIAN preprint no. 208, , Lebedev Physical Institute, Moscow(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 8, p. 259. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaHasegawa, (1990) ICR-Report-216-90-9, , Inst. for Cosmic-Ray Research, Univ. of TokyoTamada, (1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaTamada, (1990) ICR-Report-216-90-9(1981) Proc. 17th Int. Cosmic-Ray Conf., Paris, 5, p. 291(1990) Proc. Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 267. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1989) Inst. Nucl. Phys. 89-67/144, , preprint, Inst. Nucl. Phys., Moscow State UnivSmilnova, (1988) Proc. 5th Int. Sym. on Very High Energy Cosmic-Ray Interactions, p. 42. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandGoulianos, (1986) Proc. Workshop of Particle Simulation at High Energies, , University of Wisconsin, Madison, USAIvanenko, (1983) Proc. 18th Int. Cosmic-Ray Conf., Bangalore, 1983, 5, p. 274. , Tata Inst. Fundamental Research, Bombay, IndiaIvanenko, (1984) Proc. Int. Symp. on Cosmic-Rays and Particle Physics, p. 101. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1988) 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 180. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, Poland(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 251. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1991) Izv. AN USSR No. 4, , to be publishedNikolsky, Shaulov, Cherdyntseva, (1990) FIAN preprint no. 140, , Lebedev Physical Institute, Moscow, [in Russian](1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 326. , Nauka, Mosco

    Observation Of A High-energy Cosmic-ray Family Caused By A Centauro-type Nuclear Interaction In The Joint Emulsion Chamber Experiment At The Pamirs

    Get PDF
    An exotic cosmic-ray family event is observed in the large emulsion chamber exposed by the joint at the Pamirs (4360 m above sea level). The family is composed of 120γ-ray-induced showers and 37 hadron-induced showers with individual visible energy exceeding 1 TeV. The decisive feature of the event is the hadron dominance: ΣEγ, ΣE(γ) h, 〈Eγ, 〈E(γ) h〉, 〈Eγ·Rγ〉 and 〈E(γ)·Rh〉 being 298 TeV, 476 TeV, 2.5 TeV, 12.9 TeV, 28.6 GeV m and 173 GeV m, respectively. Most probably the event is due to a Centauro interaction, which occured in the atmosphere at ∼700 m above the chamber. The event will constitute the second beautiful candidate for a Centauro observed at the Pamirs. © 1987.1901-2226233Bayburina, (1981) Nucl. Phys. B, 191, p. 1Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151(1984) Trudy FIAN, 154, p. 1Borisov, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 3. , TokyoRen, (1985) 19th Intern. Cosmic ray Conf., 6, p. 317. , La JollaYamashita, (1985) 19th Intern. Cosmic ray Conf., 6, p. 364. , La JollaTamada, (1977) Nuovo Cimento, 41 B, p. 245T. Shibata et al., to be publishedHillas, (1979) 16th Intern. Cosmic ray Conf., 6, p. 13. , KyotoBattiston, Measurement of the proton-antiproton elastic and total cross section at a centre-of-mass energy of 540 GeV (1982) Physics Letters B, 117, p. 126UA5 Collab., G.J. Alner et al., preprint CERN-EP/85-62Taylor, (1976) Phys. Rev. D, 14, p. 1217Burnett, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 468. , Toky

    Nuclear Interactions Of Super High Energy Cosmic-rays Observed In Mountain Emulsion Chambers

    Get PDF
    Here we present a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. Observations cover gamma quanta, hadrons and their clusters (called "families"). The following topics are covered, concerning the characteristics of nuclear interactions the energy region 1014-1016 eV: (i) rapid dissipation seen in atmospheric diffusion of high-energy cosmic-rays; (ii) multiplicity and Pt increase in produced pi-mesons in the fragmentation region; (iii) existence of large-Pt jets, (iv) extremely hadron-rich family of the Centauro type; (v) exotic phenomena in the extremely high energy region beyond 1016 eV. © 1981.1911125(1977) Acta Univ. Lodz ser. II, (60)(1973) 13th Int. Cosmic-ray Conf., 3, p. 2228(1975) 14th Int. Cosmic-Ray Conf., 7, p. 2365(1979) AIP Conf. Proc. no. 49, p. 334(1979) 16th Int. Cosmic-ray Conf., 6, p. 344(1979) 16th Int. Cosmic-ray Conf., 7, p. 6816th Int. Cosmic-ray Conf. (1979) 16th Int. Cosmic-ray Conf., 7, p. 284(1979) 16th Int. Cosmic-ray Conf., 7, p. 294(1979) 16th Int. Cosmic-ray Conf., 13, p. 87(1979) 16th Int. Cosmic-ray Conf., 13, p. 92(1979) 16th Int. Cosmic-ray Conf., 13, p. 98(1979) AIP Conf. Proc. no. 49, p. 94(1979) AIP Conf. Proc. no. 49, p. 145(1979) AIP Conf. Proc. no. 49, p. 317(1979) 16th Int. Cosmic-ray Conf., 6, p. 350(1979) 16th Int. Cosmic-ray Conf., 6, p. 356(1979) 16th Int. Cosmic-ray Conf., 6, p. 362Nikolsky, Proc. 9th Int. High-energy Symp. (1978) CSSR, 21. , ToborMiyake, (1978) Proc. 19th Int. Conf. on High-energy physics, p. 433Vernov, (1977) Physica, 3, p. 1601Khristiansen, (1978) JETP Lett., 28, p. 124(1973) 13th Int. Cosmic-ray Conf., 3, p. 2219Izv. Acad. Nauk USSR, ser Phys. (1974) Izv. Acad. Nauk USSR, ser Phys., 38, p. 918(1975) 14th Int. Cosmic-ray Conf., 7, p. 2365(1979) 16th Int. Cosmic-ray Conf., 7, p. 68Dunaevsky, Urysson, Emelyanov, Shorin, Tashimov, (1975) FIAN preprint no. 150Dunaevsky, Urysson, Emelyanov, Shorin, Tashinov, (1979) Acta Univ. Lodz ser. II, (60), p. 199Ivanenko, Kanevskya, Roganova, (1978) JETP Lett., 40, p. 704Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 101Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 198Wrotniak, (1977) Acta Univ. Lodz ser. II, (60), p. 165Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 182Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 186Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1977) 15th Int. Cosmic-ray Conf., 7, p. 248Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1979) 16th Int. Cosmic-ray Conf., 13, p. 82Azimov, Mullazhanov, Yuldashbayev, (1979) 16th Int. Cosmic-ray Conf., 7, p. 262Azimov, Mullazhanov, Yuldashbayev, (1977) Acta Univ. Lodz ser. II, (60), p. 275Kasahara, Torri, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 70Kasahara, Torii, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 79Shibata, (1979) 16th Int. Cosmic-ray Conf., 7, p. 176H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedZhdanov, Roinishvilli, Smorodin, Tomaszevski, (1975) FIAN preprint no. 163Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 152Ellsworth, Gaisser, Yodh, (1981) Phys. Rev., 23 D, p. 764Baradzei, Smorodin, (1974) FIAN preprint nos. 103, 104Baradzei, Smorodin, (1977) Acta Univ. Lodz ser. II, (60), p. 51Zhdanov, (1980) FIAN preprint no. 140H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedShibata, (1980) Phys. Rev., 22 D, p. 100Slavatinsky, (1980) Proc. 7th European Symp. on Cosmic rays, , Leningrad, to be published(1979) AIP Conference Proc. no. 49, p. 145Azimov, Abduzhamilov, Chudakov, (1963) JETP (Sov. Phys.), 45, p. 40713th Int. Cosmic-ray Conf. (1973) 13th Int. Cosmic-ray Conf., 5, p. 326Acharya, Rao, Sivaprasad, Rao, (1979) 16th Int. Cosmic-ray Conf., 6, p. 289Ellsworth, Goodman, Yodh, Gaisser, Stanev, (1981) Phys. Rev., 23 D, p. 771Bariburina, Guseva, Denisova, (1980) Acta Univ. Lodz, 1, p. 9415th Int. Cosmic-ray Conf. (1977) 15th Int. Cosmic-ray Conf., 7, p. 184(1979) AIP Conf. Proc. no. 49, p. 33

    Sources of type III solar microwave bursts

    No full text
    Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with EUV data, made it possible to localize sources of III type microwave bursts in August 10, 2011 event within the entire frequency band of burst occurrence, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates, whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to those at other frequencies

    Apoptotic endonuclease endog regulates alternative splicing of human telomerase catalytic subunit htert

    No full text
    Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of β-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing

    Apoptotic endonuclease EndoG inhibits telomerase activity and induces malignant transformation of human CD4+ T cells

    No full text
    Telomerase activity is regulated by an alternative splicing of mRNA of the telomerase catalytic subunit hTERT (human telomerase reverse transcriptase). Increased expression of the inactive spliced hTERT results in inhibition of telomerase activity. Little is known about the mechanism of hTERT mRNA alternative splicing. This study was aimed at determining the effect of an apoptotic endonuclease G (EndoG) on alternative splicing of hTERT and telomerase activity in CD4+ human T lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated the expression of the active fulllength hTERT variant and upregulated the inactive alternatively spliced variant. Reduction of full-length hTERT levels caused downregulation of the telomerase activity, critical telomere shortening during cell division that converted cells into the replicative senescence state, activation of apoptosis, and finally cell death. Some cells survive and undergo a malignant transformation. Transformed cells feature increased telomerase activity and proliferative potential compared to the original CD4+ T cells. These cells have phenotype of T lymphoblastic leukemia cells and can form tumors and cause death in experimental mice. © 2017, Pleiades Publishing, Ltd

    Alternative splicing of telomerase catalytic subunit hTERT generated by apoptotic endonuclease EndoG induces human CD4+ T cell death

    No full text
    Telomerase activity is regulated by alternative splicing of its catalytic subunit human Telomerase Reverse Transcriptase (hTERT) mRNA. Induction of a non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of the apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. A strong correlation was identified between EndoG expression levels and hTERT splice variants in human CD4+ and CD8+ T lymphocytes. Overexpression of EndoG in CD4+ T cells down-regulated the expression of the active full-length hTERT variant and up-regulated expression of the non-active spliced variant. A reduction in full-length hTERT transcripts down-regulated telomerase activity. Long-term in vitro cultivation of EndoG-overexpressing CD4+ T cells led to dramatically shortened telomeres, conversion of cells into a replicative senescence state, and activation of the BCL2/BAX-associated apoptotic pathway finally leading to cell death. These data indicated the participation of EndoG in alternative mRNA splicing of the telomerase catalytic subunit hTERT, regulation of telomerase activity and determination of cell fate. © 2017 Elsevier Gmb

    Cisplatin-induced apoptotic endonuclease EndoG inhibits telomerase activity and causes malignant transformation of human CD4+ T lymphocytes

    No full text
    Alternative splicing of telomerase catalytic subunit hTERT pre-mRNA (human Telomerase Reverse Transcriptase) regulates telomerase activity. Increased expression of non-active splice variant hTERT results in inhibition of telomerase. Apoptotic endonuclease EndoG is known to participate in hTERT alternative splicing. Expression of EndoG can be induced in response to DNA damages. The aim of this study was to determine the ability of a DNA-damaging compound, cisplatin, to induce EndoG and its influence on alternative splicing of hTERT and telomerase activity in human CD4+ Т lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated expression of the active full-length hTERT variant and upregulated its non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. Few cells survived and underwent malignant transformation. Transformed cells have increased telomerase activity and proliferative potential compare to initial CD4+ T cells. These cells have phenotype of T lymphoblastic leukemic cells and are able to form tumors and cause death in experimental mice. © 2017, Pleiades Publishing, Ltd
    • …
    corecore