1,202 research outputs found
Balancing for Intestinal Nitrogen Indigestibility in High Producing Lactating Cattle: One Step Closer to Feeding a Cow Like a Pig?
This information was presented at the 2014 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science In the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://ansci.cals.cornell.edu/extension-outreach/adult-extension/dairy-management/order-proceedings-resources or by calling (607)255-4285
Can sexual selection drive female life histories? A comparative study on Galliform birds
Sexual selection is an important driver of many of the most spectacular morphological traits that we find in the animal kingdom (for example see Andersson, 1994). As such, sexual selection is most often emphasized as
Associated production of H^{\pm} and W^{\mp} in high-energy e+e- collisions in the Minimal Supersymmetric Standard Model
We study the associated production of the charged Higgs boson and W^{\pm}
gauge boson in high energy e+e- collisions in the Minimal Supersymmetric
Standard Model (MSSM). This associated production, which first arises at the
one loop level, offers the possibility of producing the charged Higgs boson at
the e+e- collider with mass more than half the center-of-mass energy, when the
charged Higgs pair production is kinematically forbidden. We present analytic
and numerical results for the cross section for e+e- --> W+ H- in the full
MSSM, taking into account the previously uncalculated contributions from
supersymmetric (SUSY) particles. We find that the contributions of the SUSY
particles enhance the cross section over most of SUSY parameter space,
especially when the SUSY particles are light, ~200 GeV. With favorable SUSY
parameters, at small tan beta, this process can yield more than ten
W^{\pm}H^{\mp} events for m_{H^{\pm}} <~ 350 GeV in 500 fb-1 at a 500 GeV e+e-
collider, or m_{H^{\pm}} <~ 600 GeV in 1000 fb-1 at a 1000 GeV collider. 80%
left-handed polarization of the e- beam improves these reaches to m_{H^{\pm}}
<~ 375 GeV and m_{H^{\pm}} <~ 670 GeV, respectively.Comment: v2: 21 pages, 9 figures, comments on Higgs search bounds and new
references added, and minor changes; v3: 23 pages, 11 figures, review of
literature moved from introduction to new Sec.5 and 2 plots added, references
added, typos corrected; v4: bug fixed in nu nubar H0 cross section (Fig.11),
version to appear in PR
Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model
A detailed study of the criteria for stability of the scalar potential and
the proper electroweak symmetry breaking pattern in the economical 3-3-1 model,
is presented. For the analysis we use, and improve, a method previously
developed to study the scalar potential in the two-Higgs-doublet extension of
the standard model. A new theorem related to the stability of the potential is
stated. As a consequence of this study, the consistency of the economical 3-3-1
model emerges.Comment: to be published in EPJ C, 13 page
The First VERITAS Telescope
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic
Radiation Imaging Telescope Array System) has been in operation since February
2005. We present here a technical description of the instrument and a summary
of its performance. The calibration methods are described, along with the
results of Monte Carlo simulations of the telescope and comparisons between
real and simulated data. The analysis of TeV -ray observations of the
Crab Nebula, including the reconstructed energy spectrum, is shown to give
results consistent with earlier measurements. The telescope is operating as
expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic
Charged lepton electric dipole moments with the localized leptons and the new Higgs doublet in the two Higgs doublet model
We study the lepton electric dipole moments in the split fermion scenario, in
the two Higgs doublet model, where the new Higgs scalars are localized around
the origin in the extra dimension, with the help of the localizer field. We
observe that the numerical value of the electron (muon, tau) electric dipole
moment is at the order of the magnitude of 10^{-31} (10^{-24}, 10^{-22}) (e-cm)
and this quantity is sensitive the new Higgs localization in the extra
dimension.Comment: 20 pages, 7 figure
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Disruption of PHF21A causes syndromic intellectual disability with craniofacial anomalies, epilepsy, hypotonia, and neurobehavioral problems including autism
BACKGROUND: PHF21A has been associated with intellectual disability and craniofacial anomalies based on its deletion in the Potocki-Shaffer syndrome region at 11p11.2 and its disruption in three patients with balanced translocations. In addition, three patients with de novo truncating mutations in PHF21A were reported recently. Here, we analyze genomic data from seven unrelated individuals with mutations in PHF21A and provide detailed clinical descriptions, further expanding the phenotype associated with PHF21A haploinsufficiency. METHODS: Diagnostic trio whole exome sequencing, Sanger sequencing, use of GeneMatcher, targeted gene panel sequencing, and MiSeq sequencing techniques were used to identify and confirm variants. RT-qPCR was used to measure the normal expression pattern of PHF21A in multiple human tissues including 13 different brain tissues. Protein-DNA modeling was performed to substantiate the pathogenicity of the missense mutation. RESULTS: We have identified seven heterozygous coding mutations, among which six are de novo (not maternal in one). Mutations include four frameshifts, one nonsense mutation in two patients, and one heterozygous missense mutation in the AT Hook domain, predicted to be deleterious and likely to cause loss of PHF21A function. We also found a new C-terminal domain composed of an intrinsically disordered region. This domain is truncated in six patients and thus likely to play an important role in the function of PHF21A, suggesting that haploinsufficiency is the likely underlying mechanism in the phenotype of seven patients. Our results extend the phenotypic spectrum of PHF21A mutations by adding autism spectrum disorder, epilepsy, hypotonia, and neurobehavioral problems. Furthermore, PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. CONCLUSION: Deleterious nonsense, frameshift, and missense mutations disrupting the AT Hook domain and/or an intrinsically disordered region in PHF21A were found to be associated with autism spectrum disorder, epilepsy, hypotonia, neurobehavioral problems, tapering fingers, clinodactyly, and syndactyly, in addition to intellectual disability and craniofacial anomalies. This suggests that PHF21A is involved in autism spectrum disorder and intellectual disability, and its haploinsufficiency causes a diverse neurological phenotype
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
- …