325 research outputs found

    A new approach to the chap LQ regulator exploiting the geometric properties of the Hamiltonian system

    Get PDF
    The cheap LQ regulator is reinterpreted as an output nulling problem which is a basic problem of the geometric control theory. In fact, solving the LQ regulator problem is equivalent to keep the output of the related Hamiltonian system identically zero. The solution lies on a controlled invariant subspace whose dimension is characterized in terms of the minimal conditioned invariant of the original system, and the optimal feedback gain is computed as the friend matrix of the resolving subspace. This study yields a new computational framework for the cheap LQ regulator, relying only on the very basic and simple tools of the geometric approach, namely the algorithms for controlled and conditioned invariant subspaces and invariant zeros

    Binary Reactive Adsorbate on a Random Catalytic Substrate

    Full text link
    We study the equilibrium properties of a model for a binary mixture of catalytically-reactive monomers adsorbed on a two-dimensional substrate decorated by randomly placed catalytic bonds. The interacting AA and BB monomer species undergo continuous exchanges with particle reservoirs and react (A+B→∅A + B \to \emptyset) as soon as a pair of unlike particles appears on sites connected by a catalytic bond. For the case of annealed disorder in the placement of the catalytic bonds this model can be mapped onto a classical spin model with spin values S=−1,0,+1S = -1,0,+1, with effective couplings dependent on the temperature and on the mean density qq of catalytic bonds. This allows us to exploit the mean-field theory developed for the latter to determine the phase diagram as a function of qq in the (symmetric) case in which the chemical potentials of the particle reservoirs, as well as the A−AA-A and B−BB-B interactions are equal.Comment: 12 pages, 4 figure

    Exactly Solvable Model of Monomer-Monomer Reactions on a Two-Dimensional Random Catalytic Substrate

    Full text link
    We present an \textit{exactly solvable} model of a monomer-monomer A+B→∅A + B \to \emptyset reaction on a 2D inhomogeneous, catalytic substrate and study the equilibrium properties of the two-species adsorbate. The substrate contains randomly placed catalytic bonds of mean density qq which connect neighboring adsorption sites. The interacting AA and BB (monomer) species undergo continuous exchanges with corresponding adjacent gaseous reservoirs. A reaction A+B→∅A + B \to \emptyset takes place instantaneously if AA and BB particles occupy adsorption sites connected by a catalytic bond. We find that for the case of \textit{annealed} disorder in the placement of the catalytic bonds the reaction model under study can be mapped onto the general spin S=1S = 1 (GS1) model. Here we concentrate on a particular case in which the model reduces to an exactly solvable Blume-Emery-Griffiths (BEG) model (T. Horiguchi, Phys. Lett. A {\bf 113}, 425 (1986); F.Y. Wu, Phys. Lett. A, {\bf 116}, 245 (1986)) and derive an exact expression for the disorder-averaged equilibrium pressure of the two-species adsorbate. We show that at equal partial vapor pressures of the AA and BB species this system exhibits a second-order phase transition which reflects a spontaneous symmetry breaking with large fluctuations and progressive coverage of the entire substrate by either one of the species.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Survival Probabilities of History-Dependent Random Walks

    Full text link
    We analyze the dynamics of random walks with long-term memory (binary chains with long-range correlations) in the presence of an absorbing boundary. An analytically solvable model is presented, in which a dynamical phase-transition occurs when the correlation strength parameter \mu reaches a critical value \mu_c. For strong positive correlations, \mu > \mu_c, the survival probability is asymptotically finite, whereas for \mu < \mu_c it decays as a power-law in time (chain length).Comment: 3 pages, 2 figure

    Survival probabilities in time-dependent random walks

    Full text link
    We analyze the dynamics of random walks in which the jumping probabilities are periodic {\it time-dependent} functions. In particular, we determine the survival probability of biased walkers who are drifted towards an absorbing boundary. The typical life-time of the walkers is found to decrease with an increment of the oscillation amplitude of the jumping probabilities. We discuss the applicability of the results in the context of complex adaptive systems.Comment: 4 pages, 3 figure

    Population Dynamics in Spatially Heterogeneous Systems with Drift: the generalized contact process

    Full text link
    We investigate the time evolution and stationary states of a stochastic, spatially discrete, population model (contact process) with spatial heterogeneity and imposed drift (wind) in one- and two-dimensions. We consider in particular a situation in which space is divided into two regions: an oasis and a desert (low and high death rates). Carrying out computer simulations we find that the population in the (quasi) stationary state will be zero, localized, or delocalized, depending on the values of the drift and other parameters. The phase diagram is similar to that obtained by Nelson and coworkers from a deterministic, spatially continuous model of a bacterial population undergoing convection in a heterogeneous medium.Comment: 8 papes, 12 figure

    Steady States of a Nonequilibrium Lattice Gas

    Full text link
    We present a Monte Carlo study of a lattice gas driven out of equilibrium by a local hopping bias. Sites can be empty or occupied by one of two types of particles, which are distinguished by their response to the hopping bias. All particles interact via excluded volume and a nearest-neighbor attractive force. The main result is a phase diagram with three phases: a homogeneous phase, and two distinct ordered phases. Continuous boundaries separate the homogeneous phase from the ordered phases, and a first-order line separates the two ordered phases. The three lines merge in a nonequilibrium bicritical point.Comment: 14 pages, 24 figure

    Exactly solvable model of A + A \to 0 reactions on a heterogeneous catalytic chain

    Full text link
    We present an exact solution describing equilibrium properties of the catalytically-activated A + A \to 0 reaction taking place on a one-dimensional lattice, where some of the sites possess special "catalytic" properties. The A particles undergo continuous exchanges with the vapor phase; two neighboring adsorbed As react when at least one of them resides on a catalytic site (CS). We consider three situations for the CS distribution: regular, annealed random and quenched random. For all three CS distribution types, we derive exact results for the disorder-averaged pressure and present exact asymptotic expressions for the particles' mean density. The model studied here furnishes another example of a 1D Ising-type system with random multi-site interactions which admits an exact solution.Comment: 7 pages, 3 Figures, appearing in Europhysics Letter

    Phase separation in systems with absorbing states

    Full text link
    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invariance. Some applications are also discussed.Comment: Submitted to Europhysics Let

    Cluster approximations for infection dynamics on random networks

    Full text link
    In this paper, we consider a simple stochastic epidemic model on large regular random graphs and the stochastic process that corresponds to this dynamics in the standard pair approximation. Using the fact that the nodes of a pair are unlikely to share neighbors, we derive the master equation for this process and obtain from the system size expansion the power spectrum of the fluctuations in the quasi-stationary state. We show that whenever the pair approximation deterministic equations give an accurate description of the behavior of the system in the thermodynamic limit, the power spectrum of the fluctuations measured in long simulations is well approximated by the analytical power spectrum. If this assumption breaks down, then the cluster approximation must be carried out beyond the level of pairs. We construct an uncorrelated triplet approximation that captures the behavior of the system in a region of parameter space where the pair approximation fails to give a good quantitative or even qualitative agreement. For these parameter values, the power spectrum of the fluctuations in finite systems can be computed analytically from the master equation of the corresponding stochastic process.Comment: the notation has been changed; Ref. [26] and a new paragraph in Section IV have been adde
    • …
    corecore