1,039 research outputs found

    The prevention of wind erosion in agriculture

    Get PDF
    The wind erosion is a problem over more than 80 000 hectares in the Netherlands. The damage in wind erodible areas is on the average at least 150 Dfl. per hectare per year. A lot of damages very probably pass unobserved or unreported

    Definition of the drainage filter problem

    Get PDF
    It is common to consider the following: I. Retention of soil particles that may enter the drainage pipe and cause its clogging. For some sensitive structures it is important to prevent settlements due to soil transportation by drainage water

    On the local nature and scaling of chaos in weakly nonlinear disordered chains

    Full text link
    The dynamics of a disordered nonlinear chain can be either regular or chaotic with a certain probability. The chaotic behavior is often associated with the destruction of Anderson localization by the nonlinearity. In the presentwork it is argued that at weak nonlinearity chaos is nucleated locally on rare resonant segments of the chain. Based on this picture, the probability of chaos is evaluated analytically. The same probability is also evaluated by direct numerical sampling of disorder realizations and quantitative agreement between the two results is found

    Thirty Years of Turnstiles and Transport

    Get PDF
    To characterize transport in a deterministic dynamical system is to compute exit time distributions from regions or transition time distributions between regions in phase space. This paper surveys the considerable progress on this problem over the past thirty years. Primary measures of transport for volume-preserving maps include the exiting and incoming fluxes to a region. For area-preserving maps, transport is impeded by curves formed from invariant manifolds that form partial barriers, e.g., stable and unstable manifolds bounding a resonance zone or cantori, the remnants of destroyed invariant tori. When the map is exact volume preserving, a Lagrangian differential form can be used to reduce the computation of fluxes to finding a difference between the action of certain key orbits, such as homoclinic orbits to a saddle or to a cantorus. Given a partition of phase space into regions bounded by partial barriers, a Markov tree model of transport explains key observations, such as the algebraic decay of exit and recurrence distributions.Comment: Updated and corrected versio

    Finite Element Analysis of Strain Effects on Electronic and Transport Properties in Quantum Dots and Wires

    Full text link
    Lattice mismatch in layered semiconductor structures with submicron length scales leads to extremely high nonuniform strains. This paper presents a finite element technique for incorporating the effects of the nonuniform strain into an analysis of the electronic properties of SiGe quantum structures. Strain fields are calculated using a standard structural mechanics finite element package and the effects are included as a nonuniform potential directly in the time independent Schrodinger equation; a k-p Hamiltonian is used to model the effects of multiple valence subband coupling. A variational statement of the equation is formulated and solved using the finite element method. This technique is applied to resonant tunneling diode quantum dots and wires; the resulting densities of states confined to the quantum well layers of the devices are compared to experimental current-voltage I(V) curves.Comment: 17 pages (LaTex), 18 figures (JPEG), submitted to Journal of Applied Physic

    Generic Quantum Ratchet Accelerator with Full Classical Chaos

    Get PDF
    A simple model of quantum ratchet transport that can generate unbounded linear acceleration of the quantum ratchet current is proposed, with the underlying classical dynamics fully chaotic. The results demonstrate that generic acceleration of quantum ratchet transport can occur with any type of classical phase space structure. The quantum ratchet transport with full classical chaos is also shown to be very robust to noise due to the large linear acceleration afforded by the quantum dynamics. One possible experiment allowing observation of these predictions is suggested.Comment: 4 pages, 4 figure

    Anomalous transport in Charney-Hasegawa-Mima flows

    Full text link
    Transport properties of particles evolving in a system governed by the Charney-Hasegawa-Mima equation are investigated. Transport is found to be anomalous with a non linear evolution of the second moments with time. The origin of this anomaly is traced back to the presence of chaotic jets within the flow. All characteristic transport exponents have a similar value around μ=1.75\mu=1.75, which is also the one found for simple point vortex flows in the literature, indicating some kind of universality. Moreover the law γ=μ+1\gamma=\mu+1 linking the trapping time exponent within jets to the transport exponent is confirmed and an accumulation towards zero of the spectrum of finite time Lyapunov exponent is observed. The localization of a jet is performed, and its structure is analyzed. It is clearly shown that despite a regular coarse grained picture of the jet, motion within the jet appears as chaotic but chaos is bounded on successive small scales.Comment: revised versio

    On the unconstrained expansion of a spherical plasma cloud turning collisionless : case of a cloud generated by a nanometer dust grain impact on an uncharged target in space

    Get PDF
    Nano and micro meter sized dust particles travelling through the heliosphere at several hundreds of km/s have been repeatedly detected by interplanetary spacecraft. When such fast moving dust particles hit a solid target in space, an expanding plasma cloud is formed through the vaporisation and ionisation of the dust particles itself and part of the target material at and near the impact point. Immediately after the impact the small and dense cloud is dominated by collisions and the expansion can be described by fluid equations. However, once the cloud has reached micro-m dimensions, the plasma may turn collisionless and a kinetic description is required to describe the subsequent expansion. In this paper we explore the late and possibly collisionless spherically symmetric unconstrained expansion of a single ionized ion-electron plasma using N-body simulations. Given the strong uncertainties concerning the early hydrodynamic expansion, we assume that at the time of the transition to the collisionless regime the cloud density and temperature are spatially uniform. We do also neglect the role of the ambient plasma. This is a reasonable assumption as long as the cloud density is substantially higher than the ambient plasma density. In the case of clouds generated by fast interplanetary dust grains hitting a solid target some 10^7 electrons and ions are liberated and the in vacuum approximation is acceptable up to meter order cloud dimensions. ..

    Giant acceleration in slow-fast space-periodic Hamiltonian systems

    Full text link
    Motion of an ensemble of particles in a space-periodic potential well with a weak wave-like perturbation imposed is considered. We found that slow oscillations of wavenumber of the perturbation lead to occurrence of directed particle current. This current is amplifying with time due to giant acceleration of some particles. It is shown that giant acceleration is linked with the existence of resonant channels in phase space
    corecore