79 research outputs found
Recommended from our members
Interfacial recombination in In(Al)GaAsSb/GaSb thermophotovoltaic cells
The authors have studied efficient p-on-n homo- (InGaAsSb/GaSb) and heterojunction (InGaAsSb/AlGaAsSb/GaSb) thermophotovoltaic (TPV) cells with respect to the recombination velocity at the cap-layer/emitter interface, S. In both cell types the open-circuit voltage, V{sub oc}, and the short-circuit current, J{sub ac}, have about the same sensitivity to S. The dark current, J{sub 0}, is the most sensitive of all. An examination of the essential factors in the one-dimensional minority-carrier diffusion model shows that under short-circuit conditions, photogenerated electrons diffuse rapidly away from the interface to the junction, whereas under open-circuit conditions, they remain in the emitter for a much longer bulk-recombination time, and therefore, they are more likely to recombine at the interface. A factor of 2.2 increase in S from 5 to 11 {times} 10{sup 4} cm/s produces a 25-mV decrease in V{sub oc}, a 12-% decrease in J{sub ac} or quantum efficiency, and a factor of two increase in J{sub 0}. This work points out the critical importance of interfacial recombination even in efficient TPV cells
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
GaSbBi alloys and heterostructures: fabrication and properties
International audienceDilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of band-gap reduction and spin-orbit splitting. The incorporation of Bi into antimonide based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2-5 ”m). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This book chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures
An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale â mostly prophylactic â use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)
14.3 W quasicontinuous wave front-facet power from broad-waveguide Al free 970 nm diode lasers
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
- âŠ