1,598 research outputs found

    The embedding structure and the shift operator of the U(1) lattice current algebra

    Get PDF
    The structure of block-spin embeddings of the U(1) lattice current algebra is described. For an odd number of lattice sites, the inner realizations of the shift automorphism areclassified. We present a particular inner shift operator which admits a factorization involving quantum dilogarithms analogous to the results of Faddeev and Volkov.Comment: 14 pages, Plain TeX; typos and a terminological mishap corrected; version to appear in Lett.Math.Phy

    Representation Theory of Lattice Current Algebras

    Get PDF
    Lattice current algebras were introduced as a regularization of the left- and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U_q(\sg). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts.Comment: 35 pages, LaTeX file, the revised version of the paper, to be published in Commun. Math. Phys. , the definition of the fusion product for lattice current algebras is correcte

    2D Conformal Field Theories and Holography

    Get PDF
    It is known that the chiral part of any 2d conformal field theory defines a 3d topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3d topological theory that arises is a certain ``square'' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3d gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting ``holographic'' perspective on conformal field theories in 2 dimensions.Comment: 29+1 pages, many figure

    Physical phase space of lattice Yang-Mills theory and the moduli space of flat connections on a Riemann surface

    Get PDF
    It is shown that the physical phase space of \g-deformed Hamiltonian lattice Yang-Mills theory, which was recently proposed in refs.[1,2], coincides as a Poisson manifold with the moduli space of flat connections on a Riemann surface with (LV+1)(L-V+1) handles and therefore with the physical phase space of the corresponding (2+1)(2+1)-dimensional Chern-Simons model, where LL and VV are correspondingly a total number of links and vertices of the lattice. The deformation parameter \g is identified with 2πk\frac {2\pi}{k} and kk is an integer entering the Chern-Simons action.Comment: 12 pages, latex, no figure

    Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices

    Full text link
    We consider the spontaneous creation of a dc voltage across a strongly coupled semiconductor superlattice subjected to THz radiation. We show that the dc voltage may be approximately proportional either to an integer or to a half- integer multiple of the frequency of the applied ac field, depending on the ratio of the characteristic scattering rates of conducting electrons. For the case of an ac field frequency less than the characteristic scattering rates, we demonstrate the generation of an unquantized dc voltage.Comment: 6 pages, 3 figures, RevTEX, EPSF. Revised version v3: corrected typo

    Linear magnetoresistance in compensated graphene bilayer

    Get PDF
    We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in a temperature range from 1.5 to 150 K. The observed linear magnetoresistance disappears away from charge neutrality ruling out the traditional explanation of the effect in terms of the classical random resistor network model. We show that experimental results qualitatively agree with a phenomenological two-fluid model taking into account electron-hole recombination and finite-size sample geometry

    Matrix equations and trilinear commutation relations

    Full text link
    In this paper we discuss a general algebraic approach to treating static equations of matrix models with a mass-like term. In this approach the equations of motions are considered as consequence of parafermi-like trilinear commutation relations. In this context we consider several solutions, including construction of noncommutative spheres. The equivalence of fuzzy spheres and parafermions is underlined.Comment: 10 pages, an incorrect claim is removed, one reference is adde

    Electroproduction, photoproduction, and inverse electroproduction of pions in the first resonance region

    Full text link
    Methods are set forth for determining the hadron electromagnetic structure in the sub-NNˉN\bar{N}-threshold timelike region of the virtual-photon ``mass'' and for investigating the nucleon weak structure in the spacelike region from experimental data on the process πNe+eN\pi N\to e^+e^- N at low energies. These methods are formulated using the unified description of photoproduction, electroproduction, and inverse electroproduction of pions in the first resonance region in the framework of the dispersion-relation model and on the basis of the model-independent properties of inverse electroproduction. Applications of these methods are also shown.Comment: The revised published version; Revtex4, 18 pages, 6 figure
    corecore