732 research outputs found

    In-flight acoustic measurements on a light twin-engined turboprop airplane

    Get PDF
    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference

    Propeller aircraft interior noise model

    Get PDF
    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller

    Evaluation of the NASA Ames no. 1 7 by 10 foot wind tunnel as an acoustic test facility

    Get PDF
    Measurements were made in the no. 1 7'x10' wind tunnel at NASA Ames Research Center, with the objectives of defining the acoustic characteristics and recommending minimum cost treatments so that the tunnel can be converted into an acoustic research facility. The results indicate that the noise levels in the test section are due to (a) noise generation in the test section, associated with the presence of solid bodies such as the pitot tube, and (b) propagation of acoustic energy from the fan. A criterion for noise levels in the test section is recommended, based on low-noise microphone support systems. Noise control methods required to meet the criterion include removal of hardware items for the test section and diffuser, improved design of microphone supports, and installation of acoustic treatment in the settling chamber and diffuser

    Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    Get PDF
    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions

    Acoustic transmission through a fuselage sidewall

    Get PDF
    A definition is given of an idealized fuselage sidewall structure and a simplified analytical model for determining acoustical transmission from the exterior to the interior of a fuselage was constructed. The representation of the sidewall structure chosen for the analytical model excludes complicating effects such as cabin pressurization, acoustic transmission through windows or door seal leaks, aerodynamic excitation, and structural vibration excitation of the fuselage skin

    Attitudes to war in the Church of England 1939 - 1983

    Get PDF
    A study of attitudes in the Church of England must be at once an historical survey of and commentary upon church life within the period stated. In its most formal aspect, this life is reflected in the proceedings of various representative bodies, where they have dealt with matters relating to war. The principal text is undoubtedly the statement of the 1930 Lambeth Conference which has been reaffirmed at each subsequent meeting: "War as a method of settling international disputes is incompatible with the teaching and example of Our Lord Jesus Christ." The period of study is divided into three sections: war firm, up to 1964, and to 1983, and the work of the Canterbury and York Convocations and, later, the General Synod, is dealt with closely. Particularly significant is the Falklands Conflict of 1982.Also important is theological reflection on the events. Here the influence of Reinhold Niebuhr is clearly detectable, especially in relation to the theological arguments surrounding pacifism. The Falklands Conflict provides an example of how the tradition of the Just War can be applied today. Committee’s rarely produce prophetic works. This is much more the area in which individual voices matter, and four outstanding examples are discussed: Temple, Bell, Raven and MacKinnon. Then the theology of the church is worked out in two ways. Firstly, in liturgy, the focus of church life, and in relation to war, this is Remembrance Liturgy, so a study is made of its development and content. Secondly, the theology of the church is seen in its practical ministry. Thus the work of Army Chaplains is investigated, with attention to the problems inherent in such a ministry. The existence of forces' chaplains is in itself a reminder of the Church's charge and commitment to preach the Gospel of Peace in the area of man's greatest sin

    Kinetic Roughening in Growth Models with Diffusion in Higher Dimensions

    Full text link
    We present results of numerical simulations of kinetic roughening for a growth model with surface diffusion (the Wolf-Villain model) in 3+1 and 4+1~dimensions using lattices of a linear size up to L=64L=64 in 3+1~D and L=32L=32 in 4+1~D. The effective exponents calculated both from the surface width and from the height--height correlation function are much larger than those expected based on results in lower dimensions, due to a growth instability which leads to the evolution of large mounded structures on the surface. An increase of the range for incorporation of a freshly deposited particle leads to a decrease of the roughness but does not suppress the instability.Comment: 8 pages, LaTeX 2.09, IC-DDV-93-00

    Propeller aircraft interior noise model: User's manual for computer program

    Get PDF
    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813

    A study of noise source location on a model scale augmentor wing using correlation techniques

    Get PDF
    An experimental investigation, conducted on a model-scale augmentor wing to identify the sources of far-field noise, is examined. The measurement procedure followed in the investigation involved the cross-correlation of far field sound pressures with fluctuating pressures on the surface of the augmentor flap and shroud. In addition pressures on the surfaces of the augmentor were cross-correlated. The results are interpreted as showing that the surface pressure fluctuations are mainly aerodynamic in character and are convected in the downstream direction with a velocity which is dependent on the jet exhaust velocity. However the far field sound levels in the mid and high frequency ranges are dominated by jet noise. There is an indication that in the low frequency range trailing edge noise, associated with interaction of the jet flow and the flap trailing edge, plays a significant role in the radiated sound field
    • …
    corecore