6,845 research outputs found

    Central mode and spin confinement near the boundary of the superconducting phase in YBa2Cu3O6.353 (Tc=18 K)

    Get PDF
    We have mapped the neutron scattering spin spectrum at low-energies in YBa2Cu3O6.353 (Tc=18 K) where the doping ~0.06 is near the critical value (pc=0.055) for superconductivity. No coexistence with long range ordered antiferromagnetism is found. The spins fluctuate on two energy scales, one a damped spin response with a ~2 meV relaxation rate and the other a central mode with a relaxation rate that slows to less than 0.08 meV below Tc. The spectrum mirrors that of a soft mode driving a central mode. Extremely short correlation lengths, 42+-5 Angstrom in-plane and 8+-2 Angstrom along the c direction, and isotropic spin orientations for the central mode indicate that the correlations are subcritical with respect to any second order transition to Neel order. The dynamics follows a model where damped spin fluctuations are coupled to the slow fluctuations of regions with correlations shortened by the hole doping.Comment: 5 pages 4 figures. One figure revised and some text revision. Accepted PRB Rapids February 14, 200

    Spin dynamics near the critical doping in weakly-superconducting underdoped YBa2Cu3O6.35 (Tc=18K)

    Full text link
    Using neutron scattering we have determined the magnetic structure and fluctuations in the YBa2Cu3O6.35 superconductor (Tc=18 K). The long-range ordered collinear spins of the insulating antiferromagnet are replaced by a commensurate central mode arising from slow, isotropically polarized, short-range spin correlations. The inelastic spectrum up to 30 meV is broad in wave vector and commensurate. In contrast to the the resonance peak of higher Tc superconductors, the spins exhibit a single overdamped spectrum whose rate of relaxation decreases on cooling and saturates at 5 meV below 50 K. As the relaxation rate saturates the quasi-static spin correlations grow and become resolution limited in energy. The spin susceptibility at high temperatures illustrates that the dominant energy scale is set by the temperature. At low temperatures, the scale length is geometric and not linked by velocity to dynamic widths. There is no observable suppression of the spin fluctuations or central mode upon the onset of superconductivity. The spins respond not to coherent charge pairs but to hole doping allowing coexistence of glassy short range spin order with superconductivity. Since the physics of the weakly superconducting system YBCO6.35 must connect continuously with that in more strongly superconducting YBCO6.5, we find that neither incommensurate stripe-like spin modulations nor a well-defined neutron spin resonance are essential for the onset with doping of pairing in a high temperature cuprate superconductor.Comment: 22 pages, 19 figures, accepted for publication in Phys. Rev.

    Collision Tumour of the Ampulla of Vater: Carcinoid and Adenocarcinoma

    Get PDF
    Obstructive jaundice is most commonly due to luminal stones or lesions of the head of the pancreas and more rarely ampullary and primary common bile duct lesions. Obstruction due to lesions of the ampulla of Vater may be due to adenocarcinoma which has a significantly better long term prognosis than carcinomas located in the head of the pancreas. A case is presented where two tumours were identified at the ampulla of Vater of the resected specimen one an adenocarcinoma and the other a carcinoid tumour representing a collision tumour

    Dynamic concentration of motors in microtubule arrays

    Full text link
    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.Comment: 4pages, 4 figures revte

    Helical spin-waves, magnetic order, and fluctuations in the langasite compound Ba3NbFe3Si2O14

    Get PDF
    We have investigated the spin fluctuations in the langasite compound Ba3NbFe3Si2O14 in both the ordered state and as a function of temperature. The low temperature magnetic structure is defined by a spiral phase characterized by magnetic Bragg peaks at q=(0,0,tau ~ 1/7) onset at TN=27 K as previously reported by Marty et al. The nature of the fluctuations and temperature dependence of the order parameter is consistent with a classical second order phase transition for a two dimensional triangular antiferromagnet. We will show that the physical properties and energy scales including the ordering wavevector, Curie-Weiss temperature, and the spin-waves can be explained through the use of only symmetric exchange constants without the need for the Dzyaloshinskii-Moriya interaction. This is accomplished through a set of ``helical" exchange pathways along the c direction imposed by the chiral crystal structure and naturally explains the magnetic diffuse scattering which displays a strong vector chirality up to high temperatures well above the ordering temperature. This illustrates a strong coupling between magnetic and crystalline chirality in this compound.Comment: 16 pages, 16 figures, submitted to Physical Review

    Fault‐Slip Distribution of the 1999 M_w 7.1 Hector Mine Earthquake, California, Estimated from Postearthquake Airborne LiDAR Data

    Get PDF
    The 16 October 1999 Hector Mine earthquake (M_w 7.1) was the first large earthquake for which postearthquake airborne Light Detection and Ranging (LiDAR) data were collected to image the fault surface rupture. In this work, we present measurements of both vertical and horizontal slip along the entire surface rupture of this earthquake based on airborne LiDAR data acquired in April 2000. We examine the details of the along‐fault slip distribution of this earthquake based on 255 horizontal and 85 vertical displacements using a 0.5 m digital elevation model derived from the LiDAR imagery. The slip measurements based on the LiDAR dataset are highest in the epicentral region, and taper in both directions, consistent with earlier findings by other works. The maximum dextral displacement measured from LiDAR imagery is 6.60±1.10  m, located about 700 m south of the highest field measurement (5.25±0.85  m). Our results also illustrate the difficulty in resolving displacements smaller than 1 m using LiDAR imagery alone. We analyze slip variation to see if it is affected by rock type and whether variations are statistically significant. This study demonstrates that a postearthquake airborne LiDAR survey can produce an along‐fault horizontal and vertical offset distribution plot of a quality comparable to a reconnaissance field survey. Although LiDAR data can provide a higher sampling density and enable rapid data analysis for documenting slip distributions, we find that, relative to field methods, it has a limited ability to resolve slip that is distributed over several fault strands across a zone. We recommend a combined approach that merges field observation with LiDAR analysis, so that the best attributes of both quantitative topographic and geological insight are utilized in concert to make best estimates of offsets and their uncertainties

    Bose-Einstein Correlations of Pion Wavepackets

    Get PDF
    A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity lambda as localizat of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied: 1. A Monte Carlo procedure in momentum space based on the standard Metropolis technique. 2. A molecular dynamic procedure using Bohm's quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context th influence of an unauthorized factorization of the state, i. e. the omissio of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplic where the omission of higher order corrections in the analysis of two-part correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and source is investigated. The results suggest that Coulomb effects on the co radii are not symmetric for pion pairs of different charges. For negative the radius, integrated over the whole momentum spectrum, increases substan while for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys. A (1997

    Preliminary analysis of accelerated space flight ionizing radiation testing

    Get PDF
    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods
    • 

    corecore