1,989 research outputs found
Space power systems technology enablement study
The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed
An interstellar precursor mission
A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system
On finitely ambiguous B\"uchi automata
Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one
accepting run per word, are a useful restriction of B\"uchi automata that is
well-suited for probabilistic model-checking. In this paper we propose a more
permissive variant, namely finitely ambiguous B\"uchi automata, a
generalisation where each word has at most accepting runs, for some fixed
. We adapt existing notions and results concerning finite and bounded
ambiguity of finite automata to the setting of -languages and present a
translation from arbitrary nondeterministic B\"uchi automata with states to
finitely ambiguous automata with at most states and at most accepting
runs per word
Parasite infections in a social carnivore: Evidence of their fitness consequences and factors modulating infection load
There are substantial individual differences in parasite composition and infection load in wildlife populations. Few studies have investigated the factors shaping this heterogeneity in large wild mammals or the impact of parasite infections on Darwinian fitness, particularly in juveniles. A host's parasite composition and infection load can be shaped by factors that determine contact with infective parasite stages and those that determine the host's resistance to infection, such as abiotic and social environmental factors, and age. Host–parasite interactions and synergies between coinfecting parasites may also be important. We test predictions derived from these different processes to investigate factors shaping infection loads (fecal egg/oocyte load) of two energetically costly gastrointestinal parasites: the hookworm Ancylostoma and the intracellular Cystoisospora, in juvenile spotted hyenas (Crocuta crocuta) in the Serengeti National Park, in Tanzania. We also assess whether parasite infections curtail survival to adulthood and longevity. Ancylostoma and Cystoisospora infection loads declined as the number of adult clan members increased, a result consistent with an encounter‐reduction effect whereby adults reduced encounters between juveniles and infective larvae, but were not affected by the number of juveniles in a clan. Infection loads decreased with age, possibly because active immune responses to infection improved with age. Differences in parasite load between clans possibly indicate variation in abiotic environmental factors between clan den sites. The survival of juveniles (<365 days old) to adulthood decreased with Ancylostoma load, increased with age, and was modulated by maternal social status. High‐ranking individuals with low Ancylostoma loads had a higher survivorship during the first 4 years of life than high‐ranking individuals with high Ancylostoma loads. These findings suggest that high infection loads with energetically costly parasites such as hookworms during early life can have negative fitness consequences
An asymptotic form of the reciprocity theorem with applications in x-ray scattering
The emission of electromagnetic waves from a source within or near a
non-trivial medium (with or without boundaries, crystalline or amorphous, with
inhomogeneities, absorption and so on) is sometimes studied using the
reciprocity principle. This is a variation of the method of Green's functions.
If one is only interested in the asymptotic radiation fields the generality of
these methods may actually be a shortcoming: obtaining expressions valid for
the uninteresting near fields is not just a wasted effort but may be
prohibitively difficult. In this work we obtain a modified form the reciprocity
principle which gives the asymptotic radiation field directly. The method may
be used to obtain the radiation from a prescribed source, and also to study
scattering problems. To illustrate the power of the method we study a few
pedagogical examples and then, as a more challenging application we tackle two
related problems. We calculate the specular reflection of x rays by a rough
surface and by a smoothly graded surface taking polarization effects into
account. In conventional treatments of reflection x rays are treated as scalar
waves, polarization effects are neglected. This is a good approximation at
grazing incidence but becomes increasingly questionable for soft x rays and UV
at higher incidence angles.
PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure
Performance of a BGO PET/CT with Higher Resolution PET Detectors
A new PET detector block has been designed to replace the standard detector of the Discovery ST PET/CT system. The new detector block is the same size as the original, but consists of an 8/spl times/6 (tangential× axial) matrix of crystals rather than the original 6/spl times/6. The new crystal dimensions are 4.7× 6.3× 30 mm/sup 3/ (tangential× axial× radial). Full PET/CT systems have been built with these detectors (Discovery STE). Most other aspects of the system are identical to the standard Discovery ST, with differences including the low energy threshold for 3D imaging (now 425 keV) and front-end electronics. Initial performance evaluation has been done, including NEMA NU2-2001 tests and imaging of the 3D Hoffman brain phantom and a neck phantom with small lesions. The system sensitivity was 1.90 counts/s/kBq in 2D, and 9.35 counts/s/kBq in 3D. Scatter fractions measured for 2D and 3D, respectively, were 18.6% and 34.5%. In 2D, the peak NEC of 89.9 kcps occurred at 47.0 kBq/cc. In 3D, the peak NEC of 74.3 kcps occurred at 8.5 kBq/cc. Spatial resolution (all expressed in mm FWHM) measured in 2D for 1 cm off-axis source 5.06 transaxial, 5.14 axial and for 10 cm source 5.45 radial, 5.86 tangential, and 6.23 axial. In 3D for 1 cm off-axis source 5.13 transaxial, 5.74 axial, and for 10 cm source 5.92 radial, 5.54 tangential, and 6.16 axial. Images of the brain and neck phantom demonstrate some improvement, compared to measurements on a standard Discovery ST
Non-Markovian quantum trajectories for spectral detection
We present a formulation of non-Markovian quantum trajectories for open
systems from a measurement theory perspective. In our treatment there are three
distinct ways in which non-Markovian behavior can arise; a mode dependent
coupling between bath (reservoir) and system, a dispersive bath, and by
spectral detection of the output into the bath. In the first two cases the
non-Markovian behavior is intrinsic to the interaction, in the third case the
non-Markovian behavior arises from the method of detection. We focus in detail
on the trajectories which simulate real-time spectral detection of the light
emitted from a localized system. In this case, the non-Markovian behavior
arises from the uncertainty in the time of emission of particles that are later
detected. The results of computer simulations of the spectral detection of the
spontaneous emission from a strongly driven two-level atom are presented
Hibernation is associated with increased survival and the evolution of slow life histories among mammals
Survival probability is predicted to underlie the evolution of life histories along a slow–fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories
Increased allocation to reproduction reduces future competitive ability in a burying beetle
1. The existence of a trade-off between current and future reproduction is a fundamental prediction of life-history theory. Support for this prediction comes from brood size manipulations, showing that caring for enlarged broods often reduces the parent's future survival or fecundity. However, in many species, individuals must invest in competing for the resources required for future reproduction. Thus, a neglected aspect of this trade-off is that increased allocation to current reproduction may reduce an individual's future competitive ability.
2. We tested this prediction in the burying beetle, Nicrophorus vespilloides, a species where parents care for their offspring and where there is fierce competition for resources used for breeding.
3. We manipulated reproductive effort by providing females with either a small brood of 10 larvae or a large brood of 40 larvae and compared the ability of these females, and virgin females that had no prior access to a carcass, to compete for a second carcass against a virgin competitor.
4. We found that increased allocation to current reproduction reduced future competitive ability, as females that had cared for a small brood were more successful when competing for a second carcass against a virgin competitor than females that had cared for a large brood. In addition, the costs of reproduction were offset by the benefits of feeding from the carcass during an initial breeding attempt, as females that had cared for a small brood were better competitors than virgin females that had no prior access to a carcass, whilst females that had cared for a large brood were similar in competitive ability to virgin females.
5. Our results add to our understanding of the trade-off between current and future reproduction by showing that this trade-off can manifest through differences in future competitive ability and that direct benefits of reproduction can offset some of these costs. 16-Apr-2020Read me for "Data from RichardsonStephensSmiseth_JournalofAnimalEcology.csv"
This data file consists of a comma separated values spreadsheet (.csv), which provides data for the effects of allocation to reproduction via brood size manipulation on future competitive ability in contests for a carcass. Each line in the spreadsheet represents an individual, experimental female.
female_id – individual ID of the female.
eclosion – date of eclosion.
death – date of death.
lifespan – number of days lived from eclosion to death.
treatment_code – experimental treatment (control = no breeding attempt, ten = brood of ten larvae, forty = brood of forty larvae).
won – outcome of the contest (Y = female won, N = female lost, NA = unclear).
outcome_clear – was the outcome of the contest clear? (Y = yes, N = no).
size – size of the female, measured as pronotum width (mm).
competitor_size – size of the virgin female competitor measured as pronotum width (mm).
size_difference – absolute difference in size between focal female and her competitor (mm).
brood_size – number of larvae in the experimental brood at dispersal.
dot – number and placement of identifying marks (1 or 2 = number of dots, L or R = left or right elytra).
female_pre_mass – female mass prior to initial reproductive attempt (g).
female_post_mass – female mass after initial reproductive attempt (g).
female_mass_change – female mass change during initial reproductive attempt (g).
brood_mass_pre – mass of the brood of larvae when cross fostered and given to the female (g).
brood_mass_post – mass of the brood of larvae at dispersal from the carcass (g).
breeding_carcass_mass – mass of the mouse carcass used for breeding (g).
competition_carcass_mass – mass of the mouse carcass females competed for (g).
Funding provided by: Natural Environment Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000270Award Number: NE/L002558/
- …